找回密码
 注册
查看: 337|回复: 0

R语言 secr包 deermouse()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 23:56:14 | 显示全部楼层 |阅读模式
deermouse(secr)
deermouse()所属R语言包:secr

                                         Deermouse Live-trapping Datasets
                                         Deermouse现场捕获的数据集

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Data of V. H. Reid from live trapping of deermice (Peromyscus maniculatus) at two sites in Colorado, USA.
从现场捕获的deermice(Peromyscus maniculatus)在两个地点在美国科罗拉多州的的VH里德的数据。


用法----------Usage----------


data(deermouse)



Details

详细信息----------Details----------

Two datasets of V. H. Reid were described by Otis et al. (1978) and distributed with their CAPTURE software (now available from http://www.mbr-pwrc.usgs.gov/software.html). They have been used in several other papers on closed population methods (e.g., Huggins 1991, Stanley and Richards 2005). This description is based on pages 32 and 87–93 of Otis et al. (1978).
两个数据集的VH里德的奥的斯等人。 (1978年)和分发他们的捕获的软件(现在可以从http://www.mbr-pwrc.usgs.gov/software.html,)。它们被用来在好几篇文章在封闭的填充方法(例如,哈金斯1991年,2005年士丹利和理查兹)。此描述是基于奥蒂斯等人的第32页和87-93。 (1978)。

Both datasets are from studies in Rio Blanco County, Colorado, in the summer of 1975. Trapping was for 6 consecutive nights. Traps were arranged in a 9 x 11 grid and spaced 50 feet (15.2 m) apart.
这两个数据集是从研究的Rio Blanco县,科罗拉多州,在1975年的夏天。诱捕连续6天。陷阱被安排在一个9×11的网格间隔为50英尺(15.2米)。

The first dataset was described by Otis et al. (1978: 32) as from 'a drainage bottom of sagebrush, gambel oak, and serviceberry with pinyon pine and juniper on the uplands'. By matching with the "examples" file of CAPTURE this was from East Stuart Gulch (ESG).
奥的斯等人所描述的第一个数据集。 (1978:32)从底部的山艾树的排水,gambel橡木,和serviceberry矮松树和杜松的高地“。通过匹配的“例子”捕获文件,这是斯图尔特峡谷从东(ESG)。

The second dataset (Otis et al. 1978: 87) was from Wet Swizer Creek or Gulch (WSG) in August 1975. No specific vegetation description is given for this site, but it is stated that Sherman traps were used and trapping was done twice daily.
湿Swizer河峡谷(WSG)是从1975年8月的第二个数据集(奥的斯等人,1978:87)。没有特定的植被描述的这个网站,但它指出,谢尔曼陷阱和诱捕,每日两次。

Two minor inconsistencies should be noted. Although Otis et al. (1978) said they used data from morning trap clearances, the capture histories in "examples" from CAPTURE include a "pm" tag on each record. We assume the error was in the text description, as their numerical results can be reproduced from the data file. Huggins (1991) reproduced the East Stuart Gulch dataset (omitting spatial data that were not relevant to his method), but omitted two capture histories.
两个较小的不一致,应加以注意。虽然奥的斯等人。 (1978)表示,他们使用数据从早上陷阱间隙,捕捉历史“的例子,从捕捉”时“的标签在每个记录。我们假设错误的文字说明,他们的计算结果可以被复制的数据文件。哈金斯(1991)再现了东斯图尔特峡谷数据集(忽略他的方法不相关的空间数据),但省略了两个捕获的历史。

The data are provided as two single-session capthist objects "deermouse.ESG" and "deermouse.WSG". Each has a dataframe of individual covariates, but the fields differ between the two study areas. The individual covariates of deermouse.ESG are sex (factor levels "f", "m"), age class (factor levels "y", "sa", "a") and body weight in grams. The individual covariates of deermouse.WSG are sex (factor levels "f","m") and age class (factor levels "j", "y", "sa", "a") (no data on body weight). The aging criteria used by Reid are not recorded.
作为两个单独的会话capthist的对象deermouse.ESG“和”deermouse.WSG“提供的数据。每个人都有一个数据框的个人的变量,但该领域的两个研究领域之间的不同。协变量deermouse.ESG个人的性别(因子水平F,M),龄级(因子水平Y,山,A),以克为单位的体重。协变量deermouse.WSG个人的性别(因子水平F,M)和年龄结构(因子水平J,Y,山,A)(无体重上的数据)。里德所使用的老龄化标准不会被记录。

The datasets were originally in the CAPTURE "xy complete" format which for each detection gives the "column" and "row" numbers of the trap (e.g. " 9 5" for a capture in the trap at position (x=9, y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros (e.g. "905" in this example).
最初的数据集在捕捉“XY完整的格式,为每个检测给人的列和行的数字陷阱(例如,”9“的陷阱中捕获位置(X = 9时,y = 5)在网格上)。陷阱标识符已经被重新编码为不带空格的字符串由的插入零(在这个例子中,如905)。

Sherman traps are designed to capture one animal at a time, but the data include double captures (1 at ESG and 8 at WSG – see Examples). The true detector type therefore falls between "single" and "multi". Detector type is set to "multi" in the distributed data objects.
谢尔曼被设计的陷阱捕捉动物的时间,但包括双的数据捕获(1 ESG和8日在WSG  - 参见示例)。因此,真正的探测器类型属于单和多之间。检测器的类型被设置为“多”,在分布式数据对象。

Some fitted secr models are included (ESG.0, ESG.b, ESG.t, ESG.h2, WSG.0, WSG.b, WSG.t, WSG.h2, each with the indicated effect on g0). Otis et al. (1978) draw attention to the tendency of Peromyscus to become "trap happy", and we observe that models with a behavioural response (ESG.b, WSG.b) have the lowest AIC among those fitted here.
包括一些装secr模型(ESG.0,ESG.b,ESG.t,ESG.h2,WSG.0,WSG.b,WSG.t,WSG.h2,每个指定的影响G0 )。奥的斯等人。 (1978)提请注意的倾向,Peromyscus成为“幸福陷阱”,与我们观察到一个的行为的的响应(ESG.b,WSG.b)的模型有最低的AIC在那些安装在这里。


源----------Source----------

File "examples" distributed with program CAPTURE.
文件的例子的分布式程序捕捉。


参考文献----------References----------

approach to capture experiments. Biometrics 47, 725–732.
Statistical inference from capture data on closed animal populations. Wildlife Monographs 62, 1–135.
capture–recapture data for closure. Wildlife Society Bulletin 33, 782–785.

参见----------See Also----------

closure.test
closure.test


实例----------Examples----------



par(mfrow = c(1,2), mar = c(1,1,4,1))
plot(deermouse.ESG, title = "Peromyscus data from East Stuart Gulch",
    border = 10, gridlines = FALSE, tracks = TRUE)
plot(deermouse.WSG, title = "Peromyscus data from Wet Swizer Gulch",
    border = 10, gridlines = FALSE, tracks = TRUE)

closure.test(deermouse.ESG, SB = TRUE)

## reveal multiple captures[#显示多个捕获]
table(trap(deermouse.ESG), occasion(deermouse.ESG))
table(trap(deermouse.WSG), occasion(deermouse.WSG))


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-30 10:33 , Processed in 0.020627 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表