找回密码
 注册
查看: 582|回复: 0

R语言 secr包 circular()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 23:55:00 | 显示全部楼层 |阅读模式
circular(secr)
circular()所属R语言包:secr

                                         Circular Probability
                                         通函概率

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Functions to answer the question "what radius is expected to include proportion p of points from a circular bivariate distribution corresponding to a given detection function", and the reverse. These functions may be used to relate the scale parameter(s) of a detection function (e.g., σ) to home-range area (specifically, the area within an activity contour for the corresponding simple home-range model) (see Note).
功能来回答这个问题:“什么半径预计将包括圆形对应一个给定的检测功能”的二元分布比例p点,反向。这些功能可以用来与尺度参数(S)的检测功能(例如,σ)家庭范围内的区域(特别是区域内相应的简单的家庭范围模型的活动轮廓)(见注)。


用法----------Usage----------



circular.r (p = 0.95, detectfn = 0, sigma = 1, detectpar = NULL)

circular.p (r = 1, detectfn = 0, sigma = 1, detectpar = NULL)




参数----------Arguments----------

参数:p
vector of probability levels for which radius is required
矢量的概率水平半径需要


参数:r
vector of radii for which probability level is required
矢量半径的概率水平是必需的


参数:detectfn
integer code or character string for shape of detection function 0 = halfnormal, 1 = hazard rate etc. – see detectfn
形状的检测功能0 = halfnormal,1 =风险率等的的整数代码或字符的字符串 -  detectfn


参数:sigma
spatial scale parameter of detection function  
空间尺度参数的检测功能


参数:detectpar
named list of detection function parameters  
指定检测功能参数列表


Details

详细信息----------Details----------

circular.r is the quantile function of the specified circular bivariate distribution (analogous to qnorm, for example). The quantity calculated by circular.r is sometimes called 'circular error probable' (see Note).
circular.r是位数的指定的圆形二元分布函数(类似于qnorm,例如)。数量计算的circular.r有时也被称为“圆概率误差(见注)。

For detection functions with two parameters (intercept and scale) it is enough to provide sigma. Otherwise, detectpar should be a named list including parameter values for the requested detection function (g0 may be omitted, and order does not matter).
对于带有两个参数的检测功能(拦截和规模),它是足以提供sigma。否则,detectpar应该是一个名为list的参数值所要求的检测功能(G0可以省略,顺序并不重要)。


值----------Value----------

Vector of values for the required radii or probabilities.
为所需的半径或概率的值的向量。


注意----------Note----------

The term "circular error probable" has a military origin. It is commonly used for GPS accuracy with the default probability level set to 0.5 (i.e. half of locations are further than CEP from the true location). A circular bivariate normal distriubution is commonly assumed for the circular error probable; this is equivalent to setting detectfn = "halfnormal".
“圆概率误差有一个军人出身的。它通常用于GPS的精度与默认设置为0.5(即一半的位置从真正的位置进一步的比CEP)的概率水平。一个圆形的二元的正常distriubution通常假定为圆概率误差;这相当于设置detectfn = "halfnormal"。

Closed-form expressions are used for the normal and uniform cases; in the bivariate normal case, the relationship is r = (-2*log(1-p))^0.5 * sigma. Otherwise, the probability is computed numerically by integrating the radial distribution. Numerical integration is not foolproof, so check suspicious or extreme values.
封闭形式的表达式是用于正常的,统一的情况下,在的二元正常情况下,这种关系是r = (-2*log(1-p))^0.5 * sigma。否则,概率的计算数值通过整合的径向分布。数值积分也不是万无一失的,所以检查可疑或极端值。

When circular.r is used with the default sigma = 1, the result may be interpreted as the factor by which sigma needs to be inflated to include the desired proportion of activity (e.g., 2.45 sigma for 95% of points from a circular bivariate normal distribution).
当circular.r使用的默认sigma = 1,其结果可能被解释为西格玛需要的因子,包括活动所需的比例(例如,2.45标准差为95%的点被夸大圆形二元正态分布)。


参考文献----------References----------

density of small mammals. Public Health Monograph No. 55. United States Government Printing Office.

参见----------See Also----------

detectfn,  detectfnplot
detectfn,detectfnplot


实例----------Examples----------



## Calhoun and Casby (1958) p 3.[#卡尔霍恩和Casby的(1958)第3页。]
## give p = 0.3940, 0.8645, 0.9888[#给P = 0.3940,0.8645,0.9888。]
circular.p(1:3)

## halfnormal, hazard-rate and exponential[#halfnormal,危险率和指数]
circular.r ()
circular.r (detectfn = 1, detectpar = list(sigma = 1, z = 4))
circular.r (detectfn = 2)

plot(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01)),
    type = "l", xlab = "Radius (multiples of sigma)", ylab = "Probability")
lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 2),
    type = "l", col = "red")
lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 1,
    detectpar = list(sigma = 1,z = 4)), type = "l", col = "blue")
abline (h = 0.95, lty = 2)

legend (2.8, 0.3, legend = c("halfnormal","hazard-rate, z = 4", "exponential"),
    col = c("black","blue","red"), lty = rep(1,3))

## in this example, a more interesting comparison would use[#在这个例子中,将使用一个更有趣的比较]
## sigma = 0.58 for the exponential curve.[#σ= 0.58的指数曲线。]


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-30 08:40 , Processed in 0.023285 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表