sdd(sddpack)
sdd()所属R语言包:sddpack
Semidiscrete Decomposition
半离散分解
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The semidiscrete decomposition (SDD) approximates a matrix as a weighted sum of outer products formed by vectors with entries constrained to be in the set {-1, 0, 1}.
半离散分解(SDD)形成的约束是在集合{-1,0,1}的条目的向量的外积的加权总和,一个矩阵作为相若。
用法----------Usage----------
sdd(A, kmax = 100, alphamin = 0.01, lmax = 100, rhomin = 10e-20)
参数----------Arguments----------
参数:A
matrix of values on which to run sdd
矩阵的值在其上运行SDD
参数:kmax
number of outer-loop iterations (see References)
外循环迭代数(请参阅参考资料)
参数:alphamin
progress check (see References)
进展检查(请参阅参考资料)
参数:lmax
number of inner-loop iterations (see References)
内循环迭代数(请参阅参考资料)
参数:rhomin
threshold test (See References)
阈值测试(请参阅参考资料)
Details
详细信息----------Details----------
The semidiscrete decomposition (SDD) approximates a matrix as a weighted sum of outer products formed by vectors with entries constrained to be in the set {-1, 0, 1}.
半离散分解(SDD)形成的约束是在集合{-1,0,1}的条目的向量的外积的加权总和,一个矩阵作为相若。
It is useful for image compression and for latent semantic indexing (LSI) in information retrieval.
这是非常有用的图像压缩和信息检索的潜在语义索引(LSI)。
The primary advantage of the SDD over other types of matrix approximations such as the truncated singular value decomposition (SVD) is that it typically provides a more accurate approximation for far less storage.
比其他类型的矩阵如截断奇异值分解(SVD)的近似值的SDD的主要优点是,它通常少得多的存储提供了一个更准确的近似。
The package has been ported from Matlab code given on http://www.cs.umd.edu/~oleary/SDDPACK/. See the webpage for full documentation.
包已经从Matlab代码移植过来的,给出的http://www.cs.umd.edu/~oleary/SDDPACK/。请参阅网页的完整文档。
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>x </td> <td> matrix of X's, where A is approximately equal to X%*%diag(D)%*%Y</td></tr> <tr valign="top"><td>d </td> <td> vector of D's, where A is approximately equal to X%*%diag(D)%*%Y</td></tr> <tr valign="top"><td>y </td> <td> matrix of Y's, where A is approximately equal to X%*%diag(D)%*%Y</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> x </ TD>X的<TD>矩阵,其中A是约等于X%*%diag(D)%*%Y</ TD> </ TR> <tr valign="top"> <TD> d </ TD> <TD>D的向量,其中 A是约等于X%*%diag(D)%*%Y</ TD> </ TR> <tr valign="top"> <TD>y </ TD> <TD>矩阵Y的,A约等于X%*%diag(D)%*%Y</ TD> </ TR> </表>
注意----------Note----------
Ported to R by Eric Sun <esun@cs.stanford.edu>
移植到R的孙耀威<esun@cs.stanford.edu>
(作者)----------Author(s)----------
Tamara G. Kolda, Dianne P. O'Leary (Matlab code)
参考文献----------References----------
http://www.cs.umd.edu/~oleary/SDDPACK/
实例----------Examples----------
A = matrix(rnorm(100), nrow=10)
sdd(A)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|