localSupp2(sdcMicro)
localSupp2()所属R语言包:sdcMicro
Local Suppression 2
本地抑制2
译者:生物统计家园网 机器人LoveR
描述----------Description----------
An Algorithm to perfom local suppression to achieve k-anonymity.
的一种算法perfom当地的抑制来实现k-匿名。
用法----------Usage----------
localSupp2(x, keyVars, w, importance=rep(1, length(keyVars)), method="minimizeSupp", k=1)
参数----------Arguments----------
参数:x
data frame or matrix
数据框或矩阵
参数:keyVars
column index of key variables
列索引的关键变量
参数:w
column index of sampling weights
取样权重的指数列
参数:importance
weights for each key variable
每一个关键变量的权重
参数:method
“minimizeSupp” (default), further methods will be included in future versions of the package
“minimizeSupp”(默认),进一步的方法将包括在未来版本的软件包
参数:k
parameter for k-anonymity.
K-匿名的参数。
Details
详细信息----------Details----------
With the help of this algorithm you can achieve k-anonymity in an optimized way. The procedure set missings only to those key variables for which the importance is greater than 0. Key variables with higher importance will be prefered to be the variable which will used for suppression of specific values, i.e. the vector of importance assign to each key variables a weight which is considered by the algorithm.
该算法的帮助下,你可以以优化的方式实现k-匿名。所确定的程序missings仅对那些关键变量的重要性是大于0。将首选具有较高重要性的关键变量是变量,这将用于抑制特定的值,即重要的矢量分配给每个键变量a重量,这被认为是由算法。
To guarantee k-anonymity the wrapper of function localSupp2 should be applied (localSupp2Wrapper())
为了保证k-匿名的包装的功能localSupp2的,应适用于(localSupp2Wrapper())
However, if the importance of some key variables are equal to zero, the alorithm may not find a k-anonymity solution (because there isn't any solution reachable at all, for example). The easiest way to overcome this situation is to re-run the alorithm and allow for NA's in some more key variables, i.e. re-run the algorithm with importance greater than 0 for all entries of importance. This will result in k-anonymizated results and leads to only few suppressions in the key variables where the importance of the variables are considered.
然而,如果一些关键变量的重要性都等于零,alorithm可能无法找到一个k-匿名溶液(因为没有在所有到达的任何解决方案,例如)。最简单的方法克服这种情况是重新运行alorithm,并允许NA在一些更关键的变量,即重新运行该算法重要性大于0的所有条目的重要性。这将导致在的k-anonymizated结果,和引线到只有少数压迫其中的变量的重要性被认为是在关键变量。
Method fastSupp avoids some calculation steps but this method is only significant faster if there is a large data sets with few key variables. However, fastSupp leads to an oversuppression (sligthly).
方法fastSupp避免了一些计算步骤,但这种方法是唯一的显着更快,如果有一个大的数据集的几个关键变量。然而,fastSupp导致一个oversuppression(sligthly)。
值----------Value----------
Object from class localSupp2.
对象类localSupp2。
参数:xAnon
resulting data with suppressions
由此产生的数据与镇压
参数:supps
number of suppressions in the key variables
的镇压中的关键变量
参数:totalSupps
total number of suppressions.
总数的suppressions。
参数:anonymity
TRUE, if k-anonymity is achieved
TRUE,如果K-匿名实现
参数:keyVars
index of the key variables.
指数的关键因素。
参数:importance
weight vector for key variables
关键变量的权重向量
参数:k
k for k-anoymity
k为K-anoymity
注意----------Note----------
fix me: Implementation in C and interface to R.
解决我在C:实施和接口,R.
(作者)----------Author(s)----------
Matthias Templ, Bernhard Meindl
参考文献----------References----------
Statistical Disclosure Control for Microdata Using the R-Package sdcMicro, Transactions on Data Privacy, vol. 1, number 2, pp. 67-85, 2008. http://www.tdp.cat/issues/abs.a004a08.php
参见----------See Also----------
freqCalc, localSupp
freqCalc,localSupp
实例----------Examples----------
## example from Capobianchi, Polettini and Lucarelli:[#例如,从Capobianchi,Polettini和卢卡雷利:]
data(francdat)
l1 <- localSupp2(francdat, keyVars=c(2,4,5,6), w=8)
l1
l1$x
l2 <- localSupp2(francdat, keyVars=c(2,4,5,6), w=8, k=2)
l3 <- localSupp2(francdat, keyVars=c(2,4,5,6), w=8, k=4)
## long computation time, wait some seconds to get an information[#长的计算时间,等待几秒钟,得到的信息]
## about the estimated computing time.[#估计的计算时间。]
## l = localSupp2(free1, keyVars=1:3, w=30, k=2, importance=c(0.1,1,0.8))[#升= localSupp2(FREE1,keyVars = 1:3,瓦特= 30,k = 2时,重要性= C(0.1,1,0.8))]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|