summary(ScottKnott)
summary()所属R语言包:ScottKnott
Summary Method for SK and SK.nest Objects
总结方法SK和SK.nest对象
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns (and prints) a summary list for SK and SK.nest objects.
返回并打印一个汇总列表SK和SK.nest对象。
用法----------Usage----------
## S3 method for class 'SK'
summary(object, ...)
## S3 method for class 'SK.nest'
summary(object, ...)
参数----------Arguments----------
参数:object
A given object of the class SK or SK.nest.
一个给定的对象的类SK或SK.nest。
参数:...
Potential further arguments (require by generic).
潜在的进一步的论据(要求由通用)。
(作者)----------Author(s)----------
Enio Jelihovschi (<a href="mailto:eniojelihovs@gmail.com">eniojelihovs@gmail.com</a>)<br>
Jose Claudio Faria (<a href="mailto:joseclaudio.faria@gmail.com">joseclaudio.faria@gmail.com</a>)<br>
Sergio Oliveira (<a href="mailto:solive@uesc.br">solive@uesc.br</a>)<br>
参考文献----------References----------
Wadsworth & Brooks/Cole.
参见----------See Also----------
ScottKnott
ScottKnott
实例----------Examples----------
##[#]
## Examples: Completely Randomized Design (CRD)[#示例:完全随机设计(CRD)]
## More details: demo(package='ScottKnott')[更多细节:演示(包=ScottKnott“的)]
##[#]
## The parameters can be: vectors, design matrix and the response variable,[#参数可以是:向量,设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
data(CRD2)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
sk1 <- with(CRD2, SK(x=dm, y=y, model='y ~ x',
which='x', sig.level=0.005, id.trim=5))
summary(sk1)
##[#]
## Example: Randomized Complete Block Design (RCBD)[#例如:随机区组设计(RCBD)]
## More details: demo(package='ScottKnott')[更多细节:演示(包=ScottKnott“的)]
##[#]
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
data(RCBD)
## Design matrix (dm) and response variable (y)[设计矩阵(DM)和响应变量(Y)]
sk1 <- with(RCBD, SK(x=dm, y=y, model='y ~ blk + tra',
which = 'tra'))
summary(sk1)
##[#]
## Example: Latin Squares Design (LSD)[#例如:拉丁方设计(LSD)]
## More details: demo(package='ScottKnott')[更多细节:演示(包=ScottKnott“的)]
##[#]
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
data(LSD)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
sk1 <- with(LSD, SK(x=dm, y=y, model='y ~ rows + cols + tra',
which='tra'))
summary(sk1)
##[#]
## Example: Factorial Experiment (FE)[#示例:因子实验(FE)]
## More details: demo(package='ScottKnott')[更多细节:演示(包=ScottKnott“的)]
##[#]
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
## Note: The factors are in uppercase and its levels in lowercase![#注:这些因素是在大写字母和小写字母的水平!]
data(FE)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
## Main factor: N[#主要因素:N]
sk1 <- with(FE, SK(x=dm, y=y, model='y ~ blk + N*P*K',
which='N'))
summary(sk1)
## Nested: p1/N[#嵌套:P1 / N]
nsk1 <- with(FE, SK.nest(x=dm, y=y, model='y ~ blk + N*P*K',
which='N', fl2=1))
summary(nsk1)
## Nested: k2/p2/N[#嵌套:k2/p2/N]
nsk2 <- with(FE, SK.nest(x=dm, y=y, model='y ~ blk + N*P*K',
which='N:K', fl2=2, fl3=2))
summary(nsk2)
## Nested: k1/n1/P[#嵌套:k1/n1/P]
nsk3 <- with(FE, SK.nest(x=dm, y=y, model='y ~ blk + P*N*K',
which='P:N:K', fl2=1, fl3=1))
summary(nsk3)
## Nested: p1/n1/K[#嵌套:p1/n1/K]
nsk4 <- with(FE, SK.nest(x=dm, y=y, model='y ~ blk + K*N*P',
which='K:N', fl2=1, fl3=1))
summary(nsk4)
##[#]
## Example: Split-plot Experiment (SPE)[#例如:裂区试验(SPE)]
## More details: demo(package='ScottKnott')[更多细节:演示(包=ScottKnott“的)]
##[#]
## Note: The factors are in uppercase and its levels in lowercase![#注:这些因素是在大写字母和小写字母的水平!]
data(SPE)
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
## Main factor: P[#主因子:P]
sk1 <- with(SPE, SK(x=dm, y=y, model='y ~ blk + SP*P + Error(blk/P)',
which='P', error ='blk'))
summary(sk1)
## Nested: p1/SP[#嵌套:p1/SP]
skn1 <- with(SPE, SK.nest(x=dm, y=y, model='y ~ blk + SP*P + Error(blk/P)',
which='SP', error ='Within', fl2=1 ))
summary(skn1)
data(SSPE)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
## Main factor: P[#主因子:P]
sk1 <- with(SSPE, SK(dm, y, model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='P', error='blk'))
summary(sk1)
# Main factor: SP[主要因素:SP]
sk2 <- with(SSPE, SK(dm, y, model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SP', error='blk:SP', sig.level=0.025))
summary(sk2)
# Main factor: SSP[主要因素:SSP]
sk3 <- with(SSPE, SK(dm, y, model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SSP', error='Within', sig.level=0.1))
summary(sk3)
## Nested: p1/sp[#嵌套:p1/sp]
skn1 <- with(SSPE, SK.nest(dm, y, model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SP', error='blk:SP', fl2=1))
summary(skn1)
## From: aovlist[#来自:aovlist的]
av <- with(SSPE, aov(y ~ blk + SSP*SP*P + Error(blk/P/SP), data=dfm))
summary(av)
## Nested: p/sp/SSP (at various levels of SP and P) [#嵌套:P / SP /的SSP(在不同级别的SP和P)]
skn2 <- SK.nest(av, which='SSP:SP', error='Within', fl2=1, fl3=1)
summary(skn2)
skn3 <- SK.nest(av, which='SSP:SP:P', error='Within', fl2=2, fl3=1)
summary(skn3)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|