找回密码
 注册
查看: 318|回复: 0

R语言 scape包 estSigmaI()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 22:42:13 | 显示全部楼层 |阅读模式
estSigmaI(scape)
estSigmaI()所属R语言包:scape

                                        Estimate Abundance Index Sigma
                                         估计丰度西格玛

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimate the effective sigma (magnitude of observation noise) for a survey or commercial abundance index, based on the empirical standard deviation.
估计有效的西格玛(观测噪声的大小)的调查或商业丰富度指数,根据经验标准差。


用法----------Usage----------


estSigmaI(model, what="s", series=NULL, init=NULL, FUN=mean, p=1,
          digits=2)



参数----------Arguments----------

参数:model
fitted scape model containing element CPUE and/or Survey.
安装scape模型中元素CPUE和/或Survey。


参数:what
which effective sigma to estimate: "c"[ommercial] or "s"[urvey] abundance index.
有效的标准差来估算:"c" [ommercial]或"s" [urvey丰富度指数。


参数:series
vector of strings indicating which gears or surveys to analyze (all by default).
向量的字符串表示的齿轮或调查分析(默认情况下)。


参数:init
initial sigma, determining the relative pattern of the effective sigmas between years.
最初的标准差,确定相对Sigma的年份之间的有效模式。


参数:FUN
function to use when scaling a vector of sigmas.
功能使用时的Sigma的缩放矢量。


参数:p
effective number of parameters estimated in the model.
估计在模型中的参数的有效数量。


参数:digits
number of decimal places to use when rounding, or NULL to suppress rounding.
使用时,四舍五入,或NULL抑制四舍五入的小数位数。


Details

详细信息----------Details----------

The init sigmas set a fixed pattern for the relative sigmas between years. For example, if there are two years of abundance index data and the initial sigmas are 0.1 in year 1 and 0.2 in year 2, the effective sigma will be two times greater in year 2 than in year 1, although both will be scaled up or down depending on how closely the model fits the abundance index. The value of init can be one of the following:
initSigma的设置Sigma的年份之间的相对固定的模式。例如,如果有两个多年的丰富度指数数据和初始Sigma的是0.1,第1年和第2年0.2,有效西格玛将在第2年比第1年两次,虽然都将被放大或下降取决于如何密切模型拟合丰富度指数。 init的值可以是以下之一:

  


NULLmeans read the initial sigmas from the existing CV column (default).
NULL是指从现有的CV栏(默认)读取初始Sigma的。

modelmeans read the initial sigmas from the CV column in that model (object of class scape).
modelmeans读的初始Sigma的CV列在该模型中(对象类scape“)。

numeric vectormeans those are the initial sigmas (same length as the number of years).
数字vectormeans那些初始逐步改善(相同的长度的年数)。

FALSE or 1means use one effective sigma (sigmahat) across all years.   
FALSE或1是指使用一个有效的标准差(sigmahat)的所有年。

The idea behind FUN=mean is to guarantee that regardless of the value of init, the mean effective sigma will always be the same. Other functions can be used to a similar effect, such as FUN=median.
FUN=mean背后的理念是保证,无论init,平均有效西格玛将永远是相同的价值。其他功能都可以使用一个类似的效果,如FUN=median。


值----------Value----------

Numeric vector of effective sigmas (one value if init=1), or a list of such vectors when analyzing multiple series.
有效Sigma的数字矢量(一个值,如果init=1),或这种向量进行分析时,多系列的列表。


注意----------Note----------

This function uses the empirical standard deviation to estimate an effective sigma, which may be appropriate as likelihood weights for abundance index data. The better the model fits the data, the smaller the effective sigma.
该函数使用经验的标准差估计一个有效的标准差,这可能是适当的可能性丰度指数的权重数据。更好的模型拟合的数据,有效的标准差较小。

estSigmaI can be used iteratively, along with estN and estSigmaR to assign likelihood weights that are indicated by the model fit to the data. Sigmas and sample sizes are then adjusted between model runs, until they converge. The iterate function facilitates this procedure.
estSigmaI可以反复使用,随着estN和estSigmaR分配的可能性表示的权重,通过模型拟合的数据。 Sigma的样本量之间调节模式运行,直到收敛。 iterate功能简化此过程。

If rss is the residual sum of squares in log space, n is the number of abundance index data points, and p is the effective number of parameters estimated in the model, then the estimated effective sigma is:
如果rss是残差平方的log空间,n丰富度指数的数据点的数量,和p是有效的数字模型中的参数估计,然后估计有效的标准差是:

There is no simple way to calculate p for statistical catch-at-age models. The default value of 1 is likely to underestimate the true magnitude of observation noise.
有没有简单的方法来计算p统计追赶年龄模型。很可能低估了真实大小的观测噪声的默认值1。


参见----------See Also----------

getN, getSigmaI, getSigmaR, estN, estSigmaI, and estSigmaR extract and estimate sample sizes and sigmas.
getN,getSigmaI,getSigmaR,estN,estSigmaI和estSigmaR提取和估计的样本量和逐步改善。

iterate combines all the get* and est* functions in one call.
iterate将所有的get*和est*在一个呼叫的功能。

plotIndex shows what is behind the sigma estimation.
plotIndex的背后是什么在sigma估计。

scape-package gives an overview of the package.
scape-package给出了一个概述的包。


实例----------Examples----------


## Exploring candidate sigmas:[#探索候选人Sigma的:]

getSigmaI(x.cod)       # sigma used in assessment 0.20[西格玛用于评估0.20]
estSigmaI(x.cod)       # model fit implies 0.17[模型的拟合意味着0.17]
plotIndex(x.cod)       # model fit[模型的拟合]
estSigmaI(x.cod, p=8)  # eight estimated parameters implies 0.22[8个参数估计值意味着0.22]

getSigmaI(x.sbw)          # sigma used in assessment[SIGMA用于评估]
estSigmaI(x.sbw)          # model fit implies smaller sigma[模型的拟合意味着较小的标准差]
estSigmaI(x.sbw, init=1)  # could use 0.17 in all years[可以使用所有年份的0.17]

## Same mean, regardless of init:[#同样的意思是,不管初始化:]

mean(estSigmaI(x.sbw, digits=NULL))
mean(estSigmaI(x.sbw, digits=NULL, init=1))

## Same median, regardless of init:[#位数相同,不管初始化:]

median(estSigmaI(x.sbw, FUN=median, digits=NULL))
median(estSigmaI(x.sbw, FUN=median, digits=NULL, init=1))

## Multiple series:[#多个系列:]

getSigmaI(x.oreo, "c")                 # sigma used in assessment[SIGMA用于评估]
getSigmaI(x.oreo, "c", digits=2)       # rounded[四舍五入]
estSigmaI(x.oreo, "c")                 # model fit implies smaller sigma[模型的拟合意味着较小的标准差]
estSigmaI(x.oreo, "c", init=1)         # could use 0.19 in all years[可以使用所有年份的0.19]
estSigmaI(x.oreo, "c", init=1, digits=3)  # series 2 slightly worse fit[系列2略差适合]
# estSigmaI(x.oreo, "c", init=1, p=11) # more parameters than datapoints[estSigmaI(x.oreo,“C”时,init = 1,P = 11)的参数比数据点]

getSigmaI(x.oreo, "c", series="Series 2-1")  # get one series[得到一个系列]
estSigmaI(x.oreo, "c", series="Series 2-1")  # estimate one series[估计一个系列]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 16:41 , Processed in 0.028608 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表