shape.constrained.smooth.terms(scam)
shape.constrained.smooth.terms()所属R语言包:scam
Shape preserving smooth terms in SCAM
保形顺利条款SCAM
译者:生物统计家园网 机器人LoveR
描述----------Description----------
As in mgcv(gam), shape preserving smooth terms are specified in a scam formula using s terms. All the shape constrained smooth terms are constructed using the B-splines basis proposed by Eilers and Marx (1996) with a discrete penalty on the basis coefficients.
由于在mgcv(gam),保形光滑条款中指定的一个scam公式s条款。所有的形状约束光滑条款使用B样条艾勒斯和马克思(1996年)的基础上提出一个独立的刑罚的基础上系数。
The univariate single penalty built in shape constrained smooth classes are summarized as follows
建于形状约束平滑类的单变量单处罚总结如下
Monotone increasing P-splines bs="mpi". To achieve monotone increasing smooths these reparametrize the coefficients so that they form an increasing sequence. For details see smooth.construct.mpi.smooth.spec.
单调增加P-样条bs="mpi"。为了达到单调递增平滑这些reparametrize的系数,使得它们形成了一个增加的序列。有关详细信息,请参阅smooth.construct.mpi.smooth.spec。
Monotone decreasing P-splines bs="mpd". To achieve monotone decreasing smooths these reparametrize the coefficients so that they form a decreasing sequence. A first order difference penalty applied to the basis coefficients starting with the second is used for the monotone increasing and decreasing cases.
单调递减的P-样条bs="mpd"。为了实现单调递减平滑这些reparametrize的系数,使得它们形成的下降序列。施加到与所述第二起动的基础系数罚款甲第一阶差分的单调增加和减少的情况下使用。
Convex P-splines bs="cx". These reparametrize the coefficients so that the second order differences of the basis coefficients are greater than zero. For details see smooth.construct.cx.smooth.spec.
凸P-样条bs="cx"。这些使得第二顺序差异的基础系数都大于零的系数reparametrize。有关详细信息,请参阅smooth.construct.cx.smooth.spec。
Concave P-splines bs="cv". These reparametrize the coefficients so that the second order differences of the basis coefficients are less than zero. For details see smooth.construct.cv.smooth.spec.
凹P-样条bs="cv"。这些使得第二顺序差异的基础系数小于零的系数reparametrize。有关详细信息,请参阅smooth.construct.cv.smooth.spec。
Monotone increasing and convex P-splines bs="micx". These reparametrize the coefficients so that the first and the second order differences of the basis coefficients are greater than zero. For details see smooth.construct.micx.smooth.spec.
单调递增和凸P-样条bs="micx"。这些reparametrize的系数,使得第一和第二顺序差异的基础系数都大于零。有关详细信息,请参阅smooth.construct.micx.smooth.spec。
Monotone increasing and concave P-splines bs="micv". These reparametrize the coefficients so that the first order differences of the basis coefficients are greater than zero while the second order difference are less than zero.
单调和凹P-样条bs="micv"。这些reparametrize使得第一顺序差异的基础系数都大于零,而第二阶差分小于零的系数。
Monotone decreasing and convex P-splines bs="mdcx". These reparametrize the coefficients so that the first order differences of the basis coefficients are less than zero while the second order difference are greater. For details see smooth.construct.mdcx.smooth.spec.
单调递减,凸P-样条bs="mdcx"。这些reparametrize,使得第一顺序差异的基础系数小于零,而第二阶差分较大的系数。有关详细信息,请参阅smooth.construct.mdcx.smooth.spec。
Monotone decreasing and concave P-splines bs="mdcv". These reparametrize the coefficients so that the first and the second order differences of the basis coefficients are less than zero.
单调递减,凹P-样条bs="mdcv"。这些reparametrize,使得第一和第二顺序差异的基础系数小于零的系数。
For all four types of the mixed constrained smoothing a first order difference penalty applied to the basis coefficients starting with the third one is used.
对于所有四种类型的混合制约平滑施加开始的第三个用于根据系数一阶差分罚款。
Using the concept of the tensor product spline bases bivariate smooths under monotonicity constraint where monotonicity may be assumed on only one of the covariates (single monotonicity) or both of them (double monotonicity) are added as the smooth terms of the SCAM. Bivariate B-spline is constructed by expressing the coefficients of one of the marginal univariate B-spline bases as the B-spline of the other covariate. Double or single monotonicity is achieved by the corresponding re-parametrization of the bivariate basis coefficients to satisfy the sufficient conditions formulated in terms of the first order differences of the coefficients. The following explains the built in bivariate monotonic smooth classes.
使用的概念,张量积样条基二元平滑的单调性约束,单调性假设只有一个单一单调的协变量()或两个(双单调性)增加一条,作为顺利的骗局。二元B样条是通过表达一个单变量的B-样条曲线的边际碱作为B-样条的其他协变量的系数的构成。双或单单调性是通过相应的重新参数化的二元的基础系数满足充分条件的第一阶系数的差异,制定。下面解释了内置的的二元单调的平滑类。
Double monotone increasing P-splines bs="tedmi". See smooth.construct.tedmi.smooth.spec for details.
双单调增加的P-样条bs="tedmi"。见smooth.construct.tedmi.smooth.spec的详细信息。
Double monotone decreasing P-splines bs="tedmd".
双单调递减的P-样条bs="tedmd"。
Single monotone increasing P-splines along the first covariate direction bs="tesmi1".
单单调增加的P-样条曲线沿第一协方向bs="tesmi1"。
Single monotone increasing P-splines along the second covariate direction bs="tesmi2".
单单调增加的P-样条曲线沿第二协方向bs="tesmi2"。
Single monotone decreasing P-splines along the first covariate direction bs="tesmd1".
单单调递减的P-样条曲线沿第一协方向bs="tesmd1"。
Single monotone decreasing P-splines along the second covariate direction bs="tesmd2".
单单调递减的P-样条曲线沿第二协方向bs="tesmd2"。
Double penalties for the monotonic tensor product smooths are obtained from the penalties of the marginal smooths.
双重处罚的单调张量积平滑得到的边缘平滑的刑罚。
(作者)----------Author(s)----------
Natalya Pya <nat.pya@gmail.com>
参考文献----------References----------
Statistical Science, 11(2):89-121
generalized additive mixed models. Biometrics 62(4):1025-1036
参见----------See Also----------
s, smooth.construct.mpi.smooth.spec, smooth.construct.mpd.smooth.spec, smooth.construct.cx.smooth.spec, smooth.construct.cv.smooth.spec, smooth.construct.micx.smooth.spec, smooth.construct.micv.smooth.spec, smooth.construct.mdcx.smooth.spec, smooth.construct.mdcv.smooth.spec, smooth.construct.tedmi.smooth.spec, smooth.construct.tedmd.smooth.spec, smooth.construct.tesmi1.smooth.spec, smooth.construct.tesmi2.smooth.spec, smooth.construct.tesmd1.smooth.spec,
s,smooth.construct.mpi.smooth.spec,smooth.construct.mpd.smooth.spec,smooth.construct.cx.smooth.spec,smooth.construct.cv.smooth.spec,smooth.construct.micx.smooth.spec,smooth.construct.micv.smooth.spec,smooth.construct.mdcx.smooth.spec,smooth.construct.mdcv.smooth.spec,smooth.construct.tedmi.smooth.spec,smooth.construct.tedmd.smooth.spec,smooth.construct.tesmi1.smooth.spec,smooth.construct.tesmi2.smooth.spec,smooth.construct.tesmd1.smooth.spec,
实例----------Examples----------
## see examples for scam [#见骗局的例子]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|