mam15(scaleboot)
mam15()所属R语言包:scaleboot
Mammal Phylogenetic Analysis for 15 Trees
15树木的哺乳动物分子系统发育分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Phylogenetic analysis of six mammal species for 15 trees.
系统发育分析的6种哺乳动物,15棵树。
用法----------Usage----------
data(mam15)
mam15.mt
mam15.ass
mam15.relltest
格式----------Format----------
mam15.mt is a matrix of size 3414 * 15. The (i,j) element is the site-wise log-likelihood value at site-i for tree-j for i=1,...,3414, and j=1,...,15.
mam15.mt是一个矩阵的大小为3414 * 15。第(i,j)的元素是站点明智的对数似然值在站点-树为j为i = 1,...,3414,和j = 1,...,15。
mam15.ass is a list of length 25 for association vectors. The components are t1, t2, ..., t15 for trees, and e1, e2, ..., e10 for edges.
mam15.ass是关联向量的长度为25的列表。该组件是T1,T2,...,t15的对于树,和为e1,e2,...,e10的边缘。
mam15.relltest is an object of class "relltest" of length 25.
mam15.relltest是类"relltest"的长度为25的一个目的。
Details
详细信息----------Details----------
An example of phylogenetic analysis of six mammal species: Homo sapiens (human), Phoca vitulina (harbor seal), Bos taurus (cow), Oryctolagus cuniculus (rabbit), Mus musculus (mouse), Didelphis virginiana (opossum). The data is stored in the file "mam15.aa", which contains amino acid sequences of length N=3414 for the six species obtained from mtDNA (see Note below). We consider 15 tree topologies of the six mammals as stored in the file "mam15.tpl";
系统发育分析的一个例子6个哺乳动物物种智人(人),海豹海豹(海豹),牛(牛),兔(兔),小家鼠(小鼠),Didelphis弗吉尼亚(负鼠)。该数据被存储在文件mam15.aa,它包含氨基酸序列长度N = 3414从线粒体DNA(见下面的注释)得到的6种。我们认为15树形拓扑结构的哺乳动物存储在文件mam15.tpl;
<pre> ((Homsa,(Phovi,Bosta)),Orycu,(Musmu,Didvi)); t1 (Homsa,Orycu,((Phovi,Bosta),(Musmu,Didvi))); t2 (Homsa,((Phovi,Bosta),Orycu),(Musmu,Didvi)); t3 (Homsa,(Orycu,Musmu),((Phovi,Bosta),Didvi)); t4 ((Homsa,(Phovi,Bosta)),(Orycu,Musmu),Didvi); t5 (Homsa,((Phovi,Bosta),(Orycu,Musmu)),Didvi); t6 (Homsa,(((Phovi,Bosta),Orycu),Musmu),Didvi); t7 (((Homsa,(Phovi,Bosta)),Musmu),Orycu,Didvi); t8 (((Homsa,Musmu),(Phovi,Bosta)),Orycu,Didvi); t9 (Homsa,Orycu,(((Phovi,Bosta),Musmu),Didvi)); t10 (Homsa,(((Phovi,Bosta),Musmu),Orycu),Didvi); t11 ((Homsa,((Phovi,Bosta),Musmu)),Orycu,Didvi); t12 (Homsa,Orycu,(((Phovi,Bosta),Didvi),Musmu)); t13 ((Homsa,Musmu),Orycu,((Phovi,Bosta),Didvi)); t14 ((Homsa,Musmu),((Phovi,Bosta),Orycu),Didvi); t15 </pre>
<PRE>((Homsa(Phovi,Bosta)),Orycu,(Musmu,Didvi)); t1的(Homsa,Orycu,((Phovi,Bosta),(Musmu,Didvi)));为t2(Homsa,(( phovi,Bosta),Orycu),(Musmu,Didvi)); t3的(Homsa(Orycu,Musmu),((Phovi,Bosta),Didvi)); t4的((Homsa(Phovi,Bosta)),(Orycu ,Musmu),Didvi); T5(Homsa,((Phovi,Bosta),(Orycu,Musmu)),Didvi);的t6的(Homsa,(((Phovi,Bosta),Orycu),Musmu),Didvi); t7的(((Homsa,(Phovi,Bosta)),Musmu),Orycu,Didvi); t8的(((Homsa,Musmu),(Phovi,Bosta)),Orycu Didvi); t9的(Homsa,Orycu,((( phovi,Bosta),Musmu),Didvi)); T10于(Homsa,(((Phovi,Bosta),Musmu),Orycu),Didvi),T11((Homsa,((Phovi,Bosta),Musmu)),Orycu Didvi); t12的(Homsa,Orycu,(((Phovi,Bosta),Didvi),Musmu)); t13的((Homsa,Musmu),Orycu,((Phovi,Bosta),Didvi)); t14的((Homsa ,Musmu),((Phovi,Bosta),Orycu),Didvi); T15 </ pre>
The log-likelihood values are calculated using the PAML software (Ziheng 1997) for phylogenetic inference. The two files "mam15.aa" and "mam15.tpl" are fed into PAML to generate the file "mam15.lnf" of site-wise log-likelihood values.
对数似然值的计算使用PAML软件(子恒1997年)的系统发育推论。这两个文件的mam15.aa和mam15.tpl被送入PAML生成该文件的mam15.lnf的网站上对数似然值。
Using the CONSEL software (Shimodaira and Hasegawa 2001), we convert "mam15.lnf" and "mam15.tpl" to a format suitable for the scaleboot package. We do not use CONSEL for calculating AU p-values, but use it only for file conversion. We type
使用的的CONSEL软件(Shimodaira和长谷川2001年),我们把mam15.lnf和mam15.tpl的的格式适合scaleboot包。我们不使用CONSEL AU p-值计算,但只使用它的文件转换。我们键入
<pre> seqmt --paml mam15.lnf treeass --outgroup 6 mam15.tpl > mam15.log </pre>
<PRE> seqmt - PAML mam15.lnf treeass - 类群6 mam15.tpl> mam15.log </ pre>
The first line above generates "mam15.mt", which is a simple text file containing a matrix of site-wise log-likelihood values. The second line above generates "mam15.ass" and "mam15.log", which contain information regarding which edges are included in a tree. A part of "mam15.log" is as follows.
上面的第一行产生的mam15.mt,这是一个简单的文本文件,其中包含矩阵的网站上对数似然值。上面的第二行产生mam15.ass和mam15.log,其中包含的信息就在一棵树上边缘。的一部分“mam15.log是如下。
<pre> # leaves: 6 6 1 Homsa 2 Phovi 3 Bosta 4 Orycu 5 Musmu 6 Didvi # base edges: 10 10 6 123456 1 +++--- ; 2 ++++-- ; 3 +--+-- ; 4 -+++-- ; 5 ---++- ; 6 +--++- ; 7 -++++- ; 8 +++-+- ; 9 +---+- ; 10 -++-+- ; </pre>
<PRE>#叶:6 6 1 Homsa 2 Phovi 3 Bosta 4 Orycu 5 Musmu 6 Didvi#碱基边缘:10 10 6 123456 1 + + + --- + + + + - 3 + - + - - 9 4 - + + + - 5 --- + + - 6 + - + + - 7 - + + + + - 8 + + + - + - + --- + - ; 10 - + + - + - </ pre>
The above defines edges named e1,...e10 (base edges) as clusters for six mammal species. For example, e1 = +++— = (Homsa, Phovi, Bosta).
上面定义了6种哺乳动物群的边缘命名为E1,E10(底边)。例如中,e1 = + + + - =(Homsa,Phovi,Bosta)。
The converted files are read by the scaleboot package in R:
scaleboot包在R读取转换后的文件:
<pre> mam15.mt <- read.mt("mam15.mt") mam15.ass <- read.ass("mam15.ass") </pre>
<PRE> mam15.mt < - read.mt(“mam15.mt”)mam15.ass < - read.ass(“mam15.ass)</ pre>
mam15.mt is a matrix of size 3414 * 6 for the site-wise log-likelihood values. For testing trees, we need only mam15.mt. mam15.ass is used for testing edges, and it is a list of length 25 for association vectors for t1,t2,...,t15, and e1,e2,...,e10. For example, mam15.ass$t1 = 1, indicating tree "t1" is included in tree "t1", and mam15.ass$e1 = c(1, 5, 8), indicating edge "e1" is included in trees "t1", "t5", and "t8".
mam15.mt是一个矩阵大小为3414 * 6的网站上对数似然值。对于测试的树木,我们只需要mam15.mt。 mam15.ass被用于测试的边缘,它是一个长度为25的列表关联向量的T1,T2,...,t15的,并为e1,e2,...,e10的。例如,mam15.ass$t1 = 1,表示树“t1”的被包含在树“t1”的,和mam15.ass$e1 = c(1, 5, 8),表示边缘“E1”被包含在树“t1”的,“t5的”,和“t8的” 。
Multiscale bootstrap resampling is performed by the function relltest. The simplest way to get AU p-values for trees is:
多尺度引导重采样的功能relltest。 AU p值的树木最简单的方法是:
<pre> mam15.trees <- relltest(mam15.mt) # resampling and fitting summary(mam15.trees) # calculates AU p-values </pre>
<PRE> mam15.trees - relltest(mam15.mt)##重采样和装修总结(mam15.trees)的计算AU p值</ pre>
The relltest returns an object of class "relltest". It calls the function scaleboot internally with the number of bootstrap replicates nb=10000, and takes about 20 mins. Typically, nb=10000 is large enough, but it would be safe to use larger value, say nb=100000 as in the examples below.
relltest返回一个对象类"relltest"。调用该函数scaleboot内部自举的数量复制nb=10000,大约需要20分钟。通常情况下,nb=10000是足够大,但使用较大的值,比如nb=100000在下面的例子中,这将是安全的。
Note that the default value of scales in relltest has a much wider range than that of CONSEL. It is sa=9^seq(-1,1,length=13) for relltest, and is sa=1/seq(from=0.5,to=1.4,by=0.1) for CONSEL.
需要注意的是尺度的默认值relltest具有更广泛的范围比的CONSEL。这是sa=9^seq(-1,1,length=13):relltest,是sa=1/seq(from=0.5,to=1.4,by=0.1)CONSEL。
The mam15.relltest object in data(mam15) is similar to mam15.trees above, but is also calculated for edges using mam15.ass. We can extract the result for trees by <pre> mam15.trees <- mam15.relltest[1:15] </pre>
mam15.relltest的对象data(mam15)是类似于mam15.trees上面,但也计算为使用mam15.ass的边缘。我们可以提炼出结果树的<PRE> mam15.trees < - mam15.relltest [1:15] </ pre>
The results for trees stored in the mam15.trees object above are in the order specified in the columns of mam15.mt. To sort it by increasing order of the log-likelihood difference, we can type <pre> stat <- attr(mam15.trees,"stat") # the log-likelihood differences o <- order(stat) # sort it in increasing order mam15.trees <- mam15.trees[o] # same as mam15.trees in Examples </pre>
上述存储在mam15.trees对象的树木中指定的顺序在列mam15.mt。它的对数似然差递增的顺序进行排序,我们可以输入<PRE>统计< - ATTR(mam15.trees,“统计”),对数似然的差异O < - 顺序(STAT)#排序它在增加的顺序mam15.trees - mam15.trees [O]#中的例子一样mam15.trees </ pre>
Results of the fitting are shown by using the print method. <pre> > mam15.trees Test Statistic, and Shimodaira-Hasegawa test: stat shtest t1 -2.66 94.51 (0.07) t3 2.66 80.25 (0.13) t2 7.40 57.85 (0.16) t5 17.57 17.30 (0.12) t6 18.93 14.32 (0.11) t7 20.11 11.49 (0.10) t4 20.60 10.98 (0.10) t15 22.22 7.34 (0.08) t8 25.38 3.31 (0.06) t14 26.32 3.29 (0.06) t13 28.86 1.71 (0.04) t9 31.64 0.61 (0.02) t11 31.75 0.57 (0.02) t10 34.74 0.20 (0.01) t12 36.25 0.12 (0.01) Multiscale Bootstrap Probabilities (percent): 1 2 3 4 5 6 7 8 9 10 11 12 13 t1 86 81 77 73 68 63 58 52 46 41 36 31 28 t3 14 19 23 27 30 32 32 31 30 27 25 22 20 t2 0 0 0 0 1 2 4 5 7 9 10 11 11 t5 0 0 0 0 0 1 1 2 3 5 6 6 7 t6 0 0 0 0 1 2 3 5 6 7 8 9 9 t7 0 0 0 0 0 0 0 1 2 3 4 5 5 t4 0 0 0 0 0 1 2 3 4 4 5 6 6 t15 0 0 0 0 0 0 0 0 1 1 2 2 3 t8 0 0 0 0 0 0 0 0 0 0 1 1 1 t14 0 0 0 0 0 0 0 1 1 2 3 4 4 t13 0 0 0 0 0 0 0 0 0 0 1 1 2 t9 0 0 0 0 0 0 0 0 0 0 0 1 1 t11 0 0 0 0 0 0 0 0 0 0 0 1 1 t10 0 0 0 0 0 0 0 0 0 0 0 0 0 t12 0 0 0 0 0 0 0 0 0 0 0 0 0 Numbers of Bootstrap Replicates: 1 2 3 4 5 6 7 8 9 10 11 12 13 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 Scales (Sigma Squared): 1 2 3 4 5 6 7 8 9 10 11 12 13 0.1111 0.1603 0.2311 0.3333 0.4808 0.6933 1 1.442 2.080 3 4.327 6.241 9.008 AIC values of Model Fitting: poly.1 poly.2 poly.3 sing.3 t1 89483.40 964.33 964.75 966.33 t3 75434.97 1750.22 1306.50 1752.22 t2 29361.29 403.41 36.33 -6.21 t5 23893.19 260.44 -0.22 -14.11 t6 35791.26 330.50 4.31 -2.49 t7 15221.10 93.59 -10.33 -12.04 t4 29790.60 453.95 5.22 -7.57 t15 6874.98 46.16 -10.48 -17.08 t8 1747.13 -6.88 -12.39 -13.68 t14 10905.94 131.48 2.65 -10.79 t13 3411.26 27.66 -8.30 -15.14 t9 1494.58 19.46 -13.78 -15.86 t11 914.42 -19.65 -19.71 -19.61 t10 259.68 -14.79 -17.27 -16.76 t12 178.79 -19.19 -19.61 -19.30 </pre>
拟合结果显示使用print方法。 <PRE>> mam15.trees检验统计量,和Shimodaira,长谷川测试:shtest统计T1 -2.66 94.51(0.07),T3 2.66 80.25(0.13)T2 7.40 57.85(0.16),T5 17.57 17.30(0.12)T6 18.93 14.32(0.11) T7 20.11 11.49(0.10)T4 20.60 10.98(0.10)T15 22.22 7.34(0.08)T8 25.38 3.31(0.06)T14 26.32 3.29(0.06)T13 28.86 1.71(0.04)T9 31.64 0.61(0.02)T11 31.75 0.57(0.02)T10 34.74 0.20(0.01)t12的36.25 0.12(0.01)的多尺度自举的概率(%):1 2 3 4 5 6 7 8 9 10 11 12 13 t1的86 81 77 73 68 63 58 52 46 41 36 31 28 t3的14 19 23 27 30 32 32 31 30 27 25 22 20 t2的0 0 0 0 1 2 4 5 7 9 10 11 11 t5的0 0 0 0 0 1 1 2 3 5 6 6 7 t6的0 0 0 0 1 2 3 5 6 7 8 9 9 t7的0 0 0 0 0 0 0 1 2 3 4 5 5 t4的0 0 0 0 0 1 2 3 4 4 5 6 6 t15的0 0 0 0 0 0 0 0 1 1 2 2 3 t8的0 0 0 0 0 0 0 0 0 0 1 1 1 t14的0 0 0 0 0 0 0 1 1 2 3 4 4 t13的0 0 0 0 0 0 0 0 0 0 1 1 2 t9的0 0 0 0 0 0 0 0 0 0 0 1 1 T11 0 0 0 0 0 0 0 0 0 0 0 1 1 T10 0 0 0 0 0 0 0 0 0 0 0 0 0 t12的0 0 0 0 0 0 0 0 0 0 0 0 0编号自举复制:1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05秤(Sigma公司平方):1 2 3 4 5 6 7 8 9 10 11 12 13 0.1111 0.1603 0.2311 0.3333 0.4808 0.6933 1 1.442 2.080 3 4.327 6.241 9.008 AIC的模型拟合值:poly.1 poly.2 poly.3 sing.3 T1 89483.40 964.33 T2 964.75 966.33 T3 75434.97 1750.22 1306.50 1752.22 29361.29 403.41 36.33 -6.21 T5 23893.19 260.44 -0.22 -14.11 T6 35791.26 330.50 4.31 -2.49 T7 1747.13 -6.88 15221.10 93.59 -10.33 -12.04 T4 29790.60 453.95 5.22 -7.57 T15 6874.98 46.16 -10.48 -17.08 T8 -12.39 -13.68 T14 10905.94 131.48 2.65 -10.79 T13 3411.26 27.66 -8.30 -15.14 T9 1494.58 19.46 -13.78 -15.86 T11 914.42 -19.65 -19.71 -19.61 T10 259.68 -14.79 -17.27 -16.76 T12 178.79 -19.19 -19.61 -19.30 </前>
The AU p-values are shown by the summary method. <pre> > summary(mam15.trees) Corrected P-values (percent): raw k.1 k.2 k.3 model aic t1 57.58 (0.16) 56.16 (0.04) 74.55 (0.05) 74.55 (0.05) poly.2 964.33 t3 31.86 (0.15) 30.26 (0.05) 46.41 (0.09) 45.33 (0.13) poly.3 1306.50 t2 3.68 (0.06) 3.68 (0.03) 12.97 (0.20) 16.12 (0.45) sing.3 -6.21 t5 1.34 (0.04) 1.33 (0.02) 7.92 (0.25) 10.56 (0.56) sing.3 -14.11 t6 3.18 (0.06) 3.15 (0.02) 13.15 (0.21) 15.86 (0.44) sing.3 -2.49 t7 0.49 (0.02) 0.52 (0.01) 3.66 (0.21) 4.75 (0.42) sing.3 -12.04 t4 1.55 (0.04) 1.53 (0.02) 10.54 (0.27) 14.84 (0.66) sing.3 -7.57 t15 0.08 (0.01) 0.07 (0.00) 1.11 (0.19) 1.85 (0.48) sing.3 -17.08 t8 0.00 (0.00) 0.00 (0.00) 0.04 (0.03) 0.07 (0.07) sing.3 -13.68 t14 0.22 (0.01) 0.23 (0.01) 2.76 (0.26) 4.59 (0.71) sing.3 -10.79 t13 0.02 (0.00) 0.01 (0.00) 0.50 (0.20) 1.30 (0.83) sing.3 -15.14 t9 0.00 (0.00) 0.00 (0.00) 0.23 (0.05) 1.41 (0.29) sing.3 -15.86 t11 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) poly.3 -19.71 t10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) poly.3 -17.27 t12 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) poly.3 -19.61 </pre>
AU p值显示summary方法。的<PRE>>的摘要(mam15.trees)修正P值(%):原K.1 K.2 K.3模型AIC T1 57.58 56.16(0.16)(0.04)74.55(0.05)74.55(0.05)聚。 2 964.33 T3 31.86(0.15)30.26(0.05)46.41(0.09)45.33(0.13)poly.3 1306.50 T2 3.68(0.06)3.68(0.03)12.97(0.20)16.12(0.45)sing.3 T5 1.34 -6.21(0.04) 1.33(0.02)7.92(0.25)10.56(0.56)sing.3 -14.11 t6的3.18(0.06)3.15(0.02)13.15(0.21)15.86(0.44)sing.3 -2.49 t7的0.49(0.02)0.52(0.01)3.66( 0.21)4.75(0.42)sing.3 -12.04 T4 1.55(0.04)1.53(0.02)10.54(0.27)14.84 sing.3 -7.57 T15(0.66)0.08(0.01)0.07(0.00)1.11(0.19)1.85(0.48) sing.3 -17.08 T8 0.00(0.00)0.00(0.00)0.04(0.03)0.07(0.07)sing.3 -13.68 T14 0.22(0.01)0.23(0.01)2.76(0.26)4.59(0.71)sing.3 -10.79 T13 0.02(0.00)0.01(0.00)0.50(0.20)1.30(0.83)sing.3 -15.14 T9 0.00(0.00)0.00(0.00)0.23(0.05)1.41(0.29)sing.3 -15.86 T11 0.00(0.00)0.00( 0.00)0.00(0.00)0.00(0.00)poly.3 -19.71 T10 0.00(0.00)0.00(0.00)0.00(0.00)0.00(0.00)poly.3 -17.27 T12 0.00(0.00)0.00(0.00)0.00(0.00) 0.00(0.00)poly.3 -19.61 </ pre>
The p-values for 15 trees are shown above. "raw" is the ordinary bootstrap probability, "k.1" is equivalent to "raw" but calculated from the multiscale bootstrap, "k.2" is equivalent to the third-order AU p-value of CONSEL, and finally "k.3" is an improved version of AU p-value.
上面的p值显示为15棵。 “原始”是普通的自举概率,“K.1”是相当于“原始”,但计算出的多尺度引导,“K.2”是相当于三阶AU的p值CONSEL,最后的“K 0.3“是一个改进版的AU p值。
The details for each tree are shown by extracting the corresponding element. For example, details for the seventh largest tree in the log-likelihood value ("t4") is obtained by <pre> > mam15.trees[[7]] # same as mam15.trees$t4 Multiscale Bootstrap Probabilities (percent): 1 2 3 4 5 6 7 8 9 10 11 12 13 0.00 0.00 0.01 0.08 0.27 0.80 1.55 2.55 3.58 4.42 5.22 6.00 6.38 Numbers of Bootstrap Replicates: 1 2 3 4 5 6 7 8 9 10 11 12 13 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 1e+05 Scales (Sigma Squared): 1 2 3 4 5 6 7 8 9 10 11 12 13 0.1111 0.1603 0.2311 0.3333 0.4808 0.6933 1 1.442 2.080 3 4.327 6.241 9.008 Coefficients: beta0 beta1 beta2 poly.1 2.8388 (0.0048) poly.2 1.8556 (0.0061) 0.3259 (0.0019) poly.3 1.7157 (0.0085) 0.4508 (0.0061) -0.0152 (0.0007) sing.3 1.6178 (0.0153) 0.5435 (0.0143) 0.3261 (0.0201) Model Fitting: rss df pfit aic poly.1 29814.60 12 0.0000 29790.60 poly.2 475.95 11 0.0000 453.95 poly.3 25.22 10 0.0050 5.22 sing.3 12.43 10 0.2571 -7.57 Best Model: sing.3 > summary(mam15.trees[[7]]) Raw Bootstrap Probability: 1.55 (0.04) Corrected P-values (percent): k.1 k.2 k.3 aic poly.1 0.23 (0.00) 0.23 (0.00) 0.23 (0.00) 29790.60 poly.2 1.46 (0.02) 6.30 (0.09) 6.30 (0.09) 453.95 poly.3 1.57 (0.02) 9.50 (0.21) 10.57 (0.27) 5.22 sing.3 1.53 (0.02) 10.54 (0.27) 14.84 (0.66) -7.57 Best Model: sing.3 > plot(mam15.trees[[7]],legend="topleft") </pre>
每棵树的详细信息,提取相应的元素。例如,第七大的树对数似然值(“T4”)获得的<PRE>> mam15.trees [[7]]#作为mam15.trees一样$ T4多尺度引导概率(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 0.00 0.00 0.01 0.08 0.27 0.80 1.55 2.55 3.58 4.42 5.22 6.00 6.38的引导复制:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1E +05 1E + 05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05 1E +05秤(sigma平方):1 2 3 4 5 6 7 8 9 10 11 12 13 0.1111 0.1603 0.2311 0.3333 0.4808 0.6933 1.442 2.080 3 4.327 6.241 9.008系数:beta0β1的BETA2 poly.1 2.8388(0.0048)poly.2 1.8556(0.0061)0.3259(0.0019)poly.3 1.7157(0.0085)0.4508(0.0061) -0.0152(0.0007)sing.3 1.6178(0.0153)0.5435(0.0143)0.3261(0.0201)型号配件:RSS DF PFIT AIC poly.1 29814.60 12 0.0000 29790.60 poly.2 475.95 11 0.0000 453.95 poly.3 25.22 10 0.0050 5.22唱歌。 3 12.43 10 0.2571 -7.57最佳模式:sing.3总结(mam15.trees [[7]])原材料引导概率:校正P值(%)1.55(0.04):K.1 K.2 K.3 AIC poly.1 0.23(0.00)0.23(0.00)0.23(0.00)29790.60 poly.2 1.46(0.02)6.30(0.09)6.30(0.09)453.95 poly.3 1.57(0.02)9.50(0.21)10.57(0.27)5.22唱歌0.3 1.53(0.02)10.54(0.27)14.84(0.66)-7.57型号:sing.3图(mam15.trees [[7]],传奇=“左上”)</ pre>
The plot diagnostics found in the bottom line are especially useful for confirming which model is fitting best.
图诊断的底线是特别有用的,确认哪种模式是恰当的最好的。
See other examples below.
其他下面的例子。
注意----------Note----------
Dataset files for phylogenetic inference are found at http://www.is.titech.ac.jp/~shimo/prog/scaleboot/. For Unix users, download "mam15-files.tgz", and for Windows users download "mam15-files.zip". This dataset was originally used in Shimodaira and Hasegawa (1999).
系统发育推论被发现在http://www.is.titech.ac.jp/~博扬/ PROG / scaleboot /的数据集文件。对于Unix用户,下载mam15-files.tgz,和Windows用户下载mam15-files.zip。此数据集最初是用来在Shimodaira和长谷川(1999年)。
源----------Source----------
H. Shimodaira and M. Hasegawa (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference, Molecular Biology and Evolution, 16, 1114-1116.
:H. Shimodaira,M.长谷川(1999)。对数似然性的比较多的应用系统发育推论,分子生物学与进化,16,1114-1116。
参考文献----------References----------
Yang, Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood, Computer Applications in BioSciences, 13:555-556 (software is available from http://abacus.gene.ucl.ac.uk/software/paml.html).
Shimodaira, H. and Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection, Bioinformatics, 17, 1246-1247 (software is available from http://www.is.titech.ac.jp/~shimo/prog/consel/).
参见----------See Also----------
relltest, summary.scalebootv,
relltest,summary.scalebootv,
实例----------Examples----------
data(mam15)
## show the results for trees and edges[#显示结果的树木和边缘]
mam15.relltest # print stat, shtest, bootstrap probabilities, and AIC[引导概率,打印统计,shtest,AIC]
summary(mam15.relltest) # print AU p-values[打印AU p-值]
## Not run: [#不运行:]
## simpler script to create mam15.trees[#更简单的脚本来创建mam15.trees,]
mam15.mt <- read.mt("mam15.mt")
mam15.ass <- read.ass("mam15.ass")
mam15.trees <- relltest(mam15.mt,nb=100000)
## End(Not run)[#(不执行)]
## Not run: [#不运行:]
## script to create mam15.relltest[#脚本来创建mam15.relltest的]
mam15.mt <- read.mt("mam15.mt")
mam15.ass <- read.ass("mam15.ass")
mam15.relltest <- relltest(mam15.mt,nb=100000,ass=mam15.ass)
## End(Not run)[#(不执行)]
## Not run: [#不运行:]
## Parallel version of the above script (but different in random seed)[#上面的脚本(并行版本的,但不同的随机种子)]
## It took 13 mins (40 cpu's of Athlon MP 2000+)[#花了13分钟(40 CPU的Athlon MP 2000 +)]
mam15.mt <- read.mt("mam15.mt")
mam15.ass <- read.ass("mam15.ass")
library(snow)
cl <- makeCluster(40)
mam15.relltest <- relltest(mam15.mt,nb=100000,ass=mam15.ass,cluster=cl)
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|