找回密码
 注册
查看: 2929|回复: 0

R语言 samr包 SAMseq()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 22:12:36 | 显示全部楼层 |阅读模式
SAMseq(samr)
SAMseq()所属R语言包:samr

                                        Significance analysis of sequencing data - simple user interface
                                         分析测序数据的意义 - 简单的用户界面

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Correlates a large number of features (eg. genes) with an outcome variable, such as a group indicator, quantitative variable or survival time. This is a simple user interface for the samr function applied to sequencing data. For array data applications, see the function SAM.
相互关联,大量的功能(如基因)与结果的变量,如成组指示符,定量变量或生存时间。为SAMR应用于测序数据的函数,这是一个简单的用户界面。对于数组数据的应用程序,请参阅SAM的功能。


用法----------Usage----------


SAMseq(x, y, censoring.status = NULL,
resp.type = c("Quantitative", "Two class unpaired",
"Survival", "Multiclass", "Two class paired"),
geneid = NULL, genenames = NULL, nperms = 100,
random.seed = NULL, nresamp = 20, fdr.output = 0.20)



参数----------Arguments----------

参数:x
Feature matrix: p (number of features) by n (number of samples), one observation per column (missing values allowed)
特征矩阵:对(功能数)由n(样品数),每列的一个观测值(允许缺失值)


参数:y
n-vector of outcome measurements
n维向量结果测量


参数:censoring.status
n-vector of censoring censoring.status (1=died or event occurred, 0=survived, or event was censored), needed for a censored survival outcome
n维向量的审查censoring.status(1 =死亡或事件发生,0 =活了下来,审查或事件),需要审查的生存结果


参数:resp.type
Problem type: "Quantitative" for a continuous parameter; "Two class unpaired" for two classes with unpaired observations;  "Survival" for censored survival outcome;  "Multiclass": more than 2 groups;   "Two class paired" for two classes with paired observations.
问题类型:“量化”的连续参数“两课不成对的”两个类具有未配对的观测,“求生存”为删失的生存结果,“多类”:2组以上,“两班配对”两个类配对观测。


参数:geneid
Optional character vector of geneids for output.
可选字符的矢量为输出的geneids的。


参数:genenames
Optional character vector of genenames for output.
可选字符的矢量为输出的genenames的。


参数:nperms
Number of permutations used to estimate false discovery rates
估计假发现率的排列数


参数:random.seed
Optional initial seed for random number generator (integer)
可选的初始种子的随机数发生器(整数)


参数:nresamp
Number of resamples used to construct test statistic. Default 20.
用于构造检验统计量的重新采样数。默认为20。


参数:fdr.output
(Approximate) False Discovery Rate cutoff for output in significant genes table
(概约)在重要基因表输出的假发现率阈值


Details

详细信息----------Details----------

This is a simple, user-friendly interface to the samr package used on sequencing data. It automatically disables arguments/features that do not apply to sequencing data. It calls samr, samr.compute.delta.table and samr.compute.siggenes.table. samr detects differential expression for microarray data, and sequencing data, and other data with a large number of features. samr is the R package that is called by the "official" SAM Excel Addin. The format of the response vector y and the calling sequence is illustrated in the examples below. A more complete description is given in the SAM manual
这是一个简单,友好的用户界面测序数据的SAMR包的使用。它会自动禁用参数/功能并不适用于测序数据。它要求SAMR,samr.compute.delta.table的和samr.compute.siggenes.table。 SAMR检测差异表达微阵列数据和序列数据,其他数据与大量的功能。 SAMR是R包,被称为“正式的”SAM的Excel加载项。在下面的实施例中示出的格式的响应矢量y和调用序列。更完整的说明中给出的SAM手册


值----------Value----------

A list with components <table summary="R valueblock"> <tr valign="top"><td>samr.obj</td> <td> Output of samr. See documentation for samr for details </td></tr> <tr valign="top"><td>siggenes.table</td> <td> Table of significant genes, output of  samr.compute.siggenes.table. This has components: genes.up&mdash;matrix of significant genes having positive correlation with the outcome and genes.lo&mdash;matrix of significant genes having negative correlation with the outcome. For survival data, genes.up are those genes having positive correlation with risk- that is, increased expression corresponds to higher risk (shorter survival) genes.lo are those whose increased expression corresponds to lower risk (longer survival).</td></tr> <tr valign="top"><td>delta.table</td> <td> Output of  samr.compute.delta.table.</td></tr> <tr valign="top"><td>del</td> <td> Value of delta (distance from 45 degree line in SAM plot) for  used for creating delta.table and siggenes.table. Changing the input value fdr.output will change the resulting del.</td></tr> <tr valign="top"><td>call</td> <td> The calling sequence</td></tr> </table>
组件列表<table summary="R valueblock"> <tr valign="top"> <TD>samr.obj</ TD>的SAMR <TD>输出。为SAMR的详细信息,请参阅文档</ TD> </ TR> <tr valign="top"> <TD> siggenes.table </ TD> <TD>表显着的基因,输出samr.compute.siggenes。表。这部分组成:genes.up矩阵与的结果和genes.lo矩阵的重要基因呈负相关的结果具有正相关性的重要基因。为了生存数据,genes.up这些基因具有正相关性表达增加风险,也就是说,对应于较高的风险(生存期短)genes.lo是那些表达增加相对应,以降低风险(存活时间较长)。</ TD> </ TR> <tr valign="top"> <TD>delta.table </ TD> <TD>的samr.compute.delta.table输出。</ TD> </ TR> <TR VALIGN =“顶“<TD> del</ TD> <TD> Delta值(SAM图从45度直线距离)用于创建delta.table siggenes.table。更改的输入值fdr.output的改变DEL。</ TD> </ TR> <tr valign="top"> <TD>call </ TD> <TD>的调用序列</ TD > </ TR> </ TABLE>


(作者)----------Author(s)----------


Jun Li and Balasubrimanian Narasimhan and Robert Tibshirani



参考文献----------References----------

Significance analysis of microarrays applied to the ionizing radiation response  PNAS 2001 98: 5116-5121, (Apr 24).  http://www-stat.stanford.edu/~tibs/SAM
Li, Jun and Tibshirani, R. (2011). Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. To appear, Statistical Methods in Medical Research.

实例----------Examples----------



######### two class unpaired comparison[########2类未配对的比较]
set.seed(100)
mu <- matrix(100, 1000, 20)
mu[1:100, 11:20] <- 200
mu <- scale(mu, center=FALSE, scale=runif(20, 0.5, 1.5))
x <- matrix(rpois(length(mu), mu), 1000, 20)
y <- c(rep(1, 10), rep(2, 10))

samfit <- SAMseq(x, y, resp.type = "Two class unpaired")

# examine significant gene list[检查显着的基因列表]
print(samfit)

# plot results[图结果]
plot(samfit)

######### two class paired comparison[########两个类配对比较]
set.seed(100)
mu <- matrix(100, 1000, 20)
mu[1:100, 11:20] <- 200
mu <- scale(mu, center=FALSE, scale=runif(20, 0.5, 1.5))
x <- matrix(rpois(length(mu), mu), 1000, 20)
y <- c(-(1:10), 1:10)

samfit <- SAMseq(x, y, resp.type = "Two class paired")

# examine significant gene list[检查显着的基因列表]
print(samfit)

# plot results[图结果]
plot(samfit)

######### Multiclass comparison[########多类型的比较]
set.seed(100)
mu <- matrix(100, 1000, 20)
mu[1:20, 1:5] <- 120
mu[21:50, 6:10] <- 80
mu[51:70, 11:15] <- 150
mu[71:100, 16:20] <- 60
mu <- scale(mu, center=FALSE, scale=runif(20, 0.5, 1.5))
x <- matrix(rpois(length(mu), mu), 1000, 20)
y <- c(rep(1:4, rep(5, 4)))

samfit <- SAMseq(x, y, resp.type = "Multiclass")

# examine significant gene list[检查显着的基因列表]
print(samfit)

# plot results[图结果]
plot(samfit)

######### Quantitative comparison[########定量比较]
set.seed(100)
mu <- matrix(100, 1000, 20)
y <- runif(20, 1, 3)
mu[1 : 100, ] <- matrix(rep(100 * y, 100), ncol=20, byrow=TRUE)
mu <- scale(mu, center=FALSE, scale=runif(20, 0.5, 1.5))
x <- matrix(rpois(length(mu), mu), 1000, 20)
samfit <- SAMseq(x, y, resp.type = "Quantitative")

# examine significant gene list[检查显着的基因列表]
print(samfit)

# plot results[图结果]
plot(samfit)

######### Survival comparison[########生存比较]
set.seed(100)
mu <- matrix(100, 1000, 20)
y <- runif(20, 1, 3)
mu[1 : 100, ] <- matrix(rep(100 * y, 100), ncol=20, byrow=TRUE)
mu <- scale(mu, center=FALSE, scale=runif(20, 0.5, 1.5))
x <- matrix(rpois(length(mu), mu), 1000, 20)
y <- y + runif(20, -0.5, 0.5)
censoring.status <- as.numeric(y < 2.3)
y[y >= 2.3] <- 2.3
samfit <- SAMseq(x, y, censoring.status = censoring.status,
resp.type = "Survival")

# examine significant gene list[检查显着的基因列表]
print(samfit)

# plot results[图结果]
plot(samfit)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 11:56 , Processed in 0.019616 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表