lrmodel(SAFD)
lrmodel()所属R语言包:SAFD
Linear Regression model
线性回归模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The linear regression model Y=aX+eps for trapezoidal fuzzy numbers as described in [1] has been implemented, whereby the least-squares-minimization (with constraints) is done with respect to the Bertoluzza metric (with theta=1/3). Given lists XX, YY of polygonal fuzzy numbers the functions first checks (1) if each element of the two list is in the correct form (tested by checking), (2) if the alpha-levels of all elements in the two lists coincide and (3) if the lists have the same length. If all conditions are fulfilled the function automatically converts the fuzzy numbers in XX and YY in trapezoidal ones and returns the estimations for the parameters a and B - in case of double solutions both solutions are returned.
线性回归模型Y = AX + EPS为梯形模糊数[1]已经实施,与关于到Bertoluzza度量最小二乘最小化(限制)是(theta= 1/3)。由于列表XX,YY折线模糊数的功能检查(1)如果两个列表的每个元素以正确的形式(测试checking),(2)的α-两个列表中的所有元素的水平一致,并且,(3),如果列表具有相同的长度。如果所有条件都满足的功能会自动将模糊数XX和YY在梯形的回报,估计的参数a和B - 双解决方案解决方案被返回。
用法----------Usage----------
lrmodel(XX, YY)
参数----------Arguments----------
参数:XX
...list of polygonal fuzzy numbers (the functions implicitly checks the conditions) having the same length as YY
YY ...列表的多边形的模糊数(隐式的功能检查的条件)具有相同的长度
参数:YY
...list of polygonal fuzzy numbers (the functions implicitly checks the conditions) having the same length as XX
XX ...列表的多边形的模糊数(隐式的功能检查的条件)具有相同的长度
Details
详细信息----------Details----------
See examples
请参见示例
值----------Value----------
Given input XX, YY in the correct format the function returns a list containing the estimates for a and B (in case of double solutions both solutions are returned).
给定的输入XX,YY以正确的格式函数返回一个列表,其中包含a和B双重解决方案的情况下,这两种解决方案都返回的估计。
注意----------Note----------
In case you find (almost surely existing) bugs or have recommendations for improving the functions comments are welcome to the above mentioned mail addresses.
如果你发现改善的功能(几乎可以肯定存在的)错误,或有建议意见,欢迎上述电子邮件地址。
(作者)----------Author(s)----------
Wolfgang Trutschnig <wolfgang@trutschnig.net>, Asun Lubiano <lubiano@uniovi.es>
参考文献----------References----------
[2] Gil, M.A., Lopez, M.T., Lubiano, M.A., Montenegro, M.: Regression and correlation analyses of a linear relation between random intervals, Test, 10(1), pp. 183-201 (2001)
参见----------See Also----------
See Also as checking, Mmean, hukuhara, Bvar, Bcov, bertoluzza
请参见checking,Mmean,hukuhara,Bvar,Bcov,bertoluzza
实例----------Examples----------
#Example 1 (crisp case)[例1(清脆的情况下)]
XX<-vector("list",length=2)
XX[[1]]<-data.frame(cbind(x=c(1,1,1,1),alpha=c(0,1,1,0)))
XX[[2]]<-data.frame(cbind(x=c(2,2,2,2),alpha=c(0,1,1,0)))
YY<-list(length=2)
YY[[1]]<-data.frame(cbind(x=c(1,1,1,1),alpha=c(0,1,1,0)))
YY[[2]]<-data.frame(cbind(x=c(2,2,2,2),alpha=c(0,1,1,0)))
m<-lrmodel(XX,YY)
m
#Example 2:[实施例2:]
data(XX)
V<-translator(XX[[3]],100)
XX<-vector("list",length=50)
YY<-XX
for(i in 1:50){
XX[[i]]<-generator(V,,,)
YY[[i]]<-XX[[i]]
YY[[i]]$x<-5*YY[[i]]$x+1
}
m<-lrmodel(XX,YY)
m
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|