btest.mean(SAFD)
btest.mean()所属R语言包:SAFD
One-sample bootstrap test for the mean of a FRV
单样本bootstrap检验的平均值的FRV
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given a sample XX of polygonal fuzzy numbers and a polygonal fuzzy number V the function first checks if each element of XX and V has the correct format and if the alpha-levels of all input fuzzy numbers coincide. In case yes, the function computes the standardized mean squared Bertoluzza-distance from the sample mean to V as test-statistic. Afterwards for B bootstrap samples the (bootstrap) statistic is calculated. The returned p-value is calculated as the portion of the obtained values of the bootstrap statistic that are greater than the value of the test-statistic. Furthermore, if pic=1 sample mean and V are plotted in one window and the ecdf of the bootstrap statistic in another one. For detailed explanation see papers [1] and [2] below.
给定的样本XX折线模糊数和多边形模糊数V函数首先检查如果每个元素XX和V有正确的格式和α-所有输入模糊数的水平是一致的。如果是,函数计算标准化的平均平方Bertoluzza距离从样品的意思V作为检验统计量。之后B的bootstrap样本(引导)统计的计算方法。返回的p-值被计算为自举统计量所获得的值是大于测试统计量的值的部分。此外,如果pic= 1,样本均值和V被绘制在一个窗口和厄立特里亚社区发展基金的引导在另外一个统计。有关详细的说明,请参阅文献[1]和[2]中。
用法----------Usage----------
btest.mean(XX, V, B = 1000, pic=1)
参数----------Arguments----------
参数:XX
...list of polygonal fuzzy numbers (the functions implicitly checks the conditions).
折线模糊数(隐式的功能检查的条件)...列表。
参数:V
...polygonal fuzzy number that is tested to be the mean of the FRV.
......多边形模糊数]是测试的FRV的平均值。
参数:B
...integer, by default B=1000.
...整数,默认情况下,B= 1000。
参数:pic
...numeric, if pic=1 sample mean and V are plotted in one window and the ecdf of the bootstrap statistic in another one.
...数字,如果pic= 1,样本均值和V被绘制在一个窗口和厄立特里亚社区发展基金的引导在另外一个统计。
Details
详细信息----------Details----------
See examples
请参见示例
值----------Value----------
Given input XX and V in the correct format, the function returns the p-value of the two-sided bootstrap test that the expectation is V.
给定的输入XX和V以正确的格式,该函数返回的双面引导测试的期望是Vp值。
注意----------Note----------
The function is quite slow - we will try to solve this problem in the next versions of the package.<br> In case you find (almost surely existing) bugs or have recommendations for improving the functions comments are welcome to the above mentioned mail addresses.
的功能是相当缓慢 - 在未来版本的软件包,我们会尽力解决这个问题。如果您发现<BR>(几乎是肯定存在的)错误或改善功能的意见建议,欢迎上述邮件地址。
(作者)----------Author(s)----------
Wolfgang Trutschnig <wolfgang@trutschnig.net>, Asun Lubiano <lubiano@uniovi.es>
参考文献----------References----------
[2] Montenegro, M., Colubi, A., Casals, M.R., Gil, M.A.: Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika, 59, pp. 31-49 (2004)
参见----------See Also----------
See Also as Mmean, Bvar, bertoluzza, btest2.mean, btestk.mean
请参见Mmean,Bvar,bertoluzza,btest2.mean,btestk.mean
实例----------Examples----------
#run for bigger sample sizes:[运行更大的样本大小:]
data(XX)
V<-translator(XX[[3]],50)
V2<-V
SS<-vector("list",length=50)
for (j in 1:50){
SS[[j]]<-generator(V2,)
}
b<-btest.mean(SS,V2,10)
#takes some time to run:[需要一定的时间来运行:]
#data(Trees)[数据(树)]
#V<-Trees[[1]][[47]][V <树[[1]] [[47]]]
#b<-btest.mean(Trees[[1]],V,100)[B <-btest.mean(树[[1]],V,100)]
#b[b]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|