找回密码
 注册
查看: 309|回复: 0

R语言 saemix包 saemixControl()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 21:26:49 | 显示全部楼层 |阅读模式
saemixControl(saemix)
saemixControl()所属R语言包:saemix

                                        List of options for running the algorithm SAEM
                                         的选项列表中运行的算法SAEM

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

List containing the variables relative to the optimisation algorithm. All these elements are optional and will be set to default values when running the algorithm if they are not specified by the user.
列出含有的变量相对的优化算法。所有这些元素是可选的,并且运行该算法时,如果它们没有由用户指定的,将被设置为默认值。


用法----------Usage----------


saemixControl(algorithms = c(1, 1, 1), nbiter.saemix = c(300, 100),
  nb.chains = 1, fix.seed = TRUE, seed = 23456, nmc.is = 5000, nu.is = 4,
  print.is = FALSE, nbdisplay = 100, displayProgress = TRUE, nbiter.burn = 5,
  nbiter.mcmc = c(2, 2, 2), proba.mcmc = 0.4, stepsize.rw = 0.4, rw.init = 0.5,
  alpha.sa = 0.97, nnodes.gq = 12, nsd.gq = 4, maxim.maxiter = 100,
  nb.sim = 1000, nb.simpred = 100, ipar.lmcmc = 50, ipar.rmcmc = 0.05,
  print = TRUE, save = TRUE, save.graphs = TRUE, directory = "newdir",
  warnings = FALSE)



参数----------Arguments----------

参数:algorithms
a vector of 1s specifying which algorithms are to be run.  Defaults to c(1,1,1) (respectively estimation of the Fisher Information Matrix (by linearisation), estimation of the individual parameters, and estimation of the log-likelihood by importance sampling)
一个向量的1s指定要运行的算法。默认为C(1,1,1)(分别估计Fisher信息矩阵(线性),各个参数的估计,并通过对数似然估计的重要性采样)


参数:nbiter.saemix
nb of iterations in each step (a vector containing 2 elements)
在每个步骤中的迭代nb的(一个向量,包含2个元素)


参数:nb.chains
nb of chains to be run in parallel in the MCMC algorithm. Defaults to 1.
NB链中并行运行的MCMC算法。默认为1。


参数:nbiter.burn
nb of iterations for burning
NB的迭代燃烧


参数:nbiter.mcmc
nb of iterations in each kernel during the MCMC step
注:每个内核的迭代过程中MCMC步骤


参数:proba.mcmc
probability of acceptance
接受概率


参数:stepsize.rw
stepsize for kernels q2 and q3. Defaults to 0.4
步长Q2和Q3的内核。默认为0.4


参数:rw.init
initial variance parameters for kernels. Defaults to 0.5
最初的方差参数的内核。默认为0.5


参数:alpha.sa
parameter controlling cooling in the Simulated Annealing algorithm. Defaults to 0.97
在模拟退火算法的参数控制冷却。默认为0.97


参数:fix.seed
TRUE (default) to use a fixed seed for the random number generator. When FALSE, the random number generator is initialised using a new seed, created from the current time.  Hence, different sessions started at (sufficiently) different times will give different simulation results. The seed is stored in the element seed of the options list.
TRUE(默认),使用一个固定的随机数生成器的种子。为FALSE时,随机数发生器使用一个新的种子,在从当前时间被初始化。因此,不同的会话开始(足够的)不同的时间会给出不同的仿真结果。种子被存储在选项列表中的元素的种子。


参数:seed
seed for the random number generator. Defaults to 123456
随机数发生器的种子。默认为123456


参数:nmc.is
nb of samples used when computing the likelihood through importance sampling
NB所使用的样本计算的可能性时,通过重要性采样


参数:nu.is
number of degrees of freedom of the Student distribution used for the estimation of the log-likelihood by Importance Sampling. Defaults to 4
数度自由分配,用于对数似然估计的重要性抽样的学生。默认为4


参数:print.is
when TRUE, a plot of the likelihood as a function of the number of MCMC samples when computing the likelihood through importance sampling is produced and updated every 500 samples. Defaults to FALSE
TRUE时,图的可能性作为一个函数的MCMC样本数的计算通过重要性采样的可能性时,产生和更新,每500个样本。默认为false


参数:nbdisplay
nb of iterations after which to display progress
NB的迭代后显示进度


参数:displayProgress
when TRUE, the convergence plots are plotted after every nbdisplay iteration, and a dot is written in the terminal window to indicate progress. When FALSE, plots are not shown and the algorithm runs silently. Defaults to TRUE
TRUE,时的收敛曲线绘制后,每nbdisplay迭代,点写在终端窗口中显示进度。如果为FALSE,图不显示并以静默方式运行的算法。默认为true


参数:nnodes.gq
number of nodes to use for the Gaussian quadrature when computing the likelihood with this method (defaults to 12)
的节点数目,使用高斯正交时,用这种方法计算的可能性的(默认为12)


参数:nsd.gq
span (in SD) over which to integrate when computing the likelihood by Gaussian quadrature. Defaults to 4 (eg 4 times the SD)
跨度(SD)时,在其上集成的高斯积分计算的可能性。默认为4(例如,4倍SD)


参数:maxim.maxiter
Maximum number of iterations to use when maximising the fixed effects in the algorithm. Defaults to 100
最大数量的迭代最大化时使用的算法的固定效应。默认为100


参数:nb.sim
number of simulations to perform to produce the VPC plots or compute npde. Defaults to 1000
模拟执行产生的VPC图或计算npde的。默认为1000


参数:nb.simpred
number of simulations used to compute mean predictions (ypred element), taken as a random sample within the nb.sim simulations used for npde
用于计算平均的预测(ypred元素)作为随机样本,用于npde内的nb.sim的模拟仿真数


参数:ipar.lmcmc
number of iterations required to assume convergence for the conditional estimates. Defaults to 50
要求其承担收敛的条件估计的迭代。默认为50


参数:ipar.rmcmc
confidence interval for the conditional mean and variance. Defaults to 0.95
有条件的均值和方差的置信区间。默认为0.95


参数:print
whether the results of the fit should be printed out. Defaults to TRUE
拟合的结果是否应该被打印出来。默认为true


参数:save
whether the results of the fit should be saved to a file. Defaults to TRUE
适合的结果是否应该被保存到一个文件中。默认为true


参数:save.graphs
whether diagnostic graphs and individual graphs should be saved to files. Defaults to TRUE
诊断图表和个人图是否应该被保存到文件。默认为true


参数:directory
the directory in which to save the results. Defaults to "newdir" in the current directory
目录中保存的结果。默认为“NEWDIR”在当前目录


参数:warnings
whether warnings should be output during the fit. Defaults to FALSE
是否警告应该是在适合输出。默认为false


Details

详细信息----------Details----------

All the variables are optional and will be set to their default value when running saemix.
所有的变量是可选的,将被设置为它们的默认值时,运行saemix。

The function saemix returns an object with an element options containing the options used for the algorithm, with defaults set for elements which have not been specified by the user.
的功能saemix中的一个元素,包含的算法所使用的选项,返回一个对象的元素,但没有被用户指定的默认设置。

These elements are used in subsequent functions and are not meant to be used directly.
这些元素用于在随后的功能,并且不意味着被直接使用。


(作者)----------Author(s)----------


Emmanuelle Comets <emmanuelle.comets@inserm.fr>, Audrey Lavenu, Marc Lavielle.




参考文献----------References----------


Monolix32_UsersGuide.pdf (http://software.monolix.org/sdoms/software/)

参见----------See Also----------

SaemixData,SaemixModel, SaemixObject, saemix
SaemixData,SaemixModel,SaemixObject,saemix


实例----------Examples----------



# All default options[所有的默认选项]
saemix.options<-saemixControl()

# All default options, changing seed[所有的默认选项,更改种子]
saemix.options<-saemixControl(seed=632545)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 00:36 , Processed in 0.028533 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表