saemix-package(saemix)
saemix-package()所属R语言包:saemix
Stochastic Approximation Expectation Maximization (SAEM) algorithm for non-linear mixed effects models
随机逼近期望最大化(SAEM)算法,非线性混合效应模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
</table>
</ TABLE>
Details
详细信息----------Details----------
</table>
</ TABLE>
The SAEM package includes a number of undocumented functions, which are not meant to be used directly by the user.
的SAEM封装包括:数无证的功能,这是由用户直接使用并不意味着。
defaultsetdefault
defaultsetdefault
computational functionscutoff,cutoff.max, cutoff.eps, cutoff.res, compute.Uy, compute.Uy.nocov, conditional.distribution, gqg.mlx
的计算functionscutoff,cutoff.max,cutoff.eps,cutoff.res,compute.Uy,compute.Uy.nocov,conditional.distribution,gqg.mlx
distributionsnormcdf, norminv
distributionsnormcdf,NORMINV
error modelerror
错误modelerror
samplingtrnd.mlx, tpdf.mlx, gammarnd.mlx
samplingtrnd.mlx,tpdf.mlx,gammarnd.mlx
parameter transformationstranspsi, transphi, dtransphi
参数transformationstranspsi,transphi,dtransphi
(作者)----------Author(s)----------
Emmanuelle Comets <emmanuelle.comets@inserm.fr>, Audrey Lavenu, Marc Lavielle.
参考文献----------References----------
Monolix32_UsersGuide.pdf (http://software.monolix.org/sdoms/software/)
参见----------See Also----------
nlme,SaemixData,SaemixModel, SaemixObject,saemix
NLME,SaemixData,SaemixModel,SaemixObject,saemix
实例----------Examples----------
data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=c("Id"),name.predictors=c("Dose","Time"),
name.response=c("Concentration"),name.covariates=c("Weight","Sex"),
units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")
model1cpt<-function(psi,id,xidep) {
dose<-xidep[,1]
tim<-xidep[,2]
ka<-psi[id,1]
V<-psi[id,2]
CL<-psi[id,3]
k<-CL/V
ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))
return(ypred)
}
saemix.model<-saemixModel(model=model1cpt,
description="One-compartment model with first-order absorption",
psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3, byrow=TRUE,dimnames=list(NULL,
c("ka","V","CL"))),transform.par=c(1,1,1),
covariate.model=matrix(c(0,1,0,0,0,0),ncol=3,byrow=TRUE),fixed.estim=c(1,1,1),
covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),
omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE), error.model="constant")
saemix.options<-list(seed=632545,save=FALSE,save.graphs=FALSE)
saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)
print(saemix.fit)
plot(saemix.fit)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|