PD1.saemix(saemix)
PD1.saemix()所属R语言包:saemix
Data simulated according to an Emax response model, in SAEM format
根据数据模拟Emax的响应模型,在SAEM格式
译者:生物统计家园网 机器人LoveR
描述----------Description----------
PD1.saemix contains data from winter wheat experiments.
PD1.saemix冬小麦试验的数据。
用法----------Usage----------
PD1.saemix
格式----------Format----------
This data frame contains the following columns:
该数据框包含以下几列:
subject: the site number
主题:网站数
dose: simulated dose.
模拟剂量:剂量。
response: simulated response.
回应:模拟的响应。
gender: gender (0 for male, 1 for female).
性别:性别(男,女)。
Details
详细信息----------Details----------
These examples were used by P. Girard and F. Mentre for the symposium dedicated to Comparison of Algorithms Using Simulated Data Sets and Blind Analysis, that took place in Lyon, France, September 2004.
P.吉拉德和F. Mentre这些例子所使用的算法使用模拟数据集和的盲人分析,发生在2004年9月,法国里昂,比较专用的专题讨论会。
The dataset contains 100 individuals, each receiving 3 different doses0, 10, 90), (5, 25, 65) or (0, 20, 30). It was assumed that doses were given in a cross-over study with sufficient wash out period to avoid carry over. Responses (y_ij) were simulated with the following pharmacodynamic model:
该数据集包含100个个体,每个接收3种不同的剂量:(0,10,90),(5,25,65)或(0,20,30)。这是假设在一个交叉研究,充分洗出期,以避免结转剂量。响应(y_ij)的药效学模型进行了模拟:
y_ij = E0_i + D_ij Emax_i/(D_ij + ED50_i) +epsilon_ij
y_ij E0_i + D_ij Emax_i /(D_ij + ED50_i)+ epsilon_ij
The individual parameters were simulated according to
根据各个参数进行了模拟
log (E0_i) = log (E0) + eta_i1 log (Emax_i) = log (Emax) + eta_i2 log (E50_i) = log (E50) + beta w_i + eta_i3
log(E0_i)=log(E0)+ eta_i1的log(Emax_i)=log(EMAX)+ eta_i2log(E50_i)=log(E50)+βw_i + eta_i3
PD1.saemix contains the data simulated with a gender effect, beta=0.3.
PD1.saemix包含的数据模拟与性别的影响,β= 0.3。
PD2.saemix contains the data simulated without a gender effect, beta=0.
PD2.saemix包含模拟的数据没有性别的影响,β= 0。
源----------Source----------
Girard P., Mentre F. Comparison of Algorithms Using Simulated Data Sets and Blind Analysis workshop, Lyon, France, September 2004.
吉拉德P.,Mentre F.比较算法使用模拟数据集和盲法分析研讨会,2004年9月,法国里昂。
实例----------Examples----------
data(PD1.saemix)
saemix.data<-saemixData(name.data=PD1.saemix,header=TRUE,name.group=c("subject"),
name.predictors=c("dose"),name.response=c("response"),
name.covariates=c("gender"), units=list(x="mg",y="-",covariates=c("-")))
modelemax<-function(psi,id,xidep) {
# input:[输入:]
# psi : matrix of parameters (3 columns, E0, Emax, EC50)[PSI:矩阵参数(3列,E0,EMAX,EC50)]
# id : vector of indices [ID:矢量指数]
# xidep : dependent variables (same nb of rows as length of id)[xidep:因变量(行ID的长度相同NB)]
# returns:[返回:]
# a vector of predictions of length equal to length of id[等于的id的长度的矢量的长度的预测]
dose<-xidep[,1]
e0<-psi[id,1]
emax<-psi[id,2]
e50<-psi[id,3]
f<-e0+emax*dose/(e50+dose)
return(f)
}
saemix.model<-saemixModel(model=modelemax,description="Emax growth model",
psi0=matrix(c(20,300,20,0,0,0),ncol=3,byrow=TRUE,
dimnames=list(NULL, c("E0","Emax","EC50"))),transform.par=c(1,1,1),
covariate.model=matrix(c(0,0,1),ncol=3,byrow=TRUE),
fixed.estim=c(1,1,1),covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),
ncol=3,byrow=TRUE),error.model="constant")
saemix.options<-list(algorithms=c(1,1,1),nb.chains=1,seed=42,
save=FALSE,save.graphs=FALSE)
# Plotting the data[数据作图]
plot(saemix.data,main="Simulated data PD1")
saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)
# Compare models with and without covariates with LL by Importance Sampling[LL重要性抽样比较模型和协变量]
# SE not computed[SE不计算]
model1<-saemixModel(model=modelemax,description="Emax growth model",
psi0=matrix(c(20,300,20,0,0,0),ncol=3,byrow=TRUE,dimnames=list(NULL,
c("E0","Emax","EC50"))), transform.par=c(1,1,1),
covariate.model=matrix(c(0,0,0), ncol=3,byrow=TRUE),fixed.estim=c(1,1,1))
model2<-saemixModel(model=modelemax,description="Emax growth model",
psi0=matrix(c(20,300,20,0,0,0),ncol=3,byrow=TRUE,dimnames=list(NULL,
c("E0","Emax","EC50"))), transform.par=c(1,1,1),
covariate.model=matrix(c(0,0,1), ncol=3,byrow=TRUE),fixed.estim=c(1,1,1))
saemix.options<-list(algorithms=c(0,1,1),nb.chains=3,seed=765754,
nbiter.saemix=c(500,300),save=FALSE,save.graphs=FALSE)
fit1<-saemix(model1,saemix.data,saemix.options)
fit2<-saemix(model2,saemix.data,saemix.options)
wstat<-(-2)*(fit1["results"]["ll.is"]-fit2["results"]["ll.is"])
cat("LRT test for covariate effect on EC50: p-value=",1-pchisq(wstat,1),"\n")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|