map.saemix(saemix)
map.saemix()所属R语言包:saemix
Estimates of the individual parameters (conditional mode)
各个参数的估计(有条件的模式)
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Compute the estimates of the individual parameters PSI_i (conditional mode - Maximum A Posteriori)
计算估计的各个参数PSI_i的(有条件的模式 - 最大后验概率)
用法----------Usage----------
map.saemix(saemixObject)
参数----------Arguments----------
参数:saemixObject
an object returned by the saemix function
返回的对象saemix的函数
Details
详细信息----------Details----------
The MCMC procedure is used to estimate the conditional mode (or Maximum A Posteriori) m(phi_i |yi ; hattheta) = Argmax_phi_i p(phi_i |yi ; hattheta)
MCMC程序是用来估计有条件的模式(或最大后验概率)(phi_i |一; hattheta)= Argmax_phi_i p(phi_i |易hattheta)
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>saemixObject:</td> <td> returns the object with the estimates of the MAP parameters (see example for usage)</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> saemixObject:</ TD> <TD>返回该对象的MAP参数的估计(见范例使用)</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Emmanuelle Comets <emmanuelle.comets@inserm.fr>, Audrey Lavenu, Marc Lavielle.
参考文献----------References----------
Monolix32_UsersGuide.pdf (http://software.monolix.org/sdoms/software/)
参见----------See Also----------
SaemixObject,saemix
SaemixObject,saemix
实例----------Examples----------
data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=c("Id"),name.predictors=c("Dose","Time"),
name.response=c("Concentration"),name.covariates=c("Weight","Sex"),
units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")
model1cpt<-function(psi,id,xidep) {
dose<-xidep[,1]
tim<-xidep[,2]
ka<-psi[id,1]
V<-psi[id,2]
CL<-psi[id,3]
k<-CL/V
ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))
return(ypred)
}
saemix.model<-saemixModel(model=model1cpt,
description="One-compartment model with first-order absorption",
psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3, byrow=TRUE,
dimnames=list(NULL, c("ka","V","CL"))),transform.par=c(1,1,1),
covariate.model=matrix(c(0,1,0,0,0,0),ncol=3,byrow=TRUE),fixed.estim=c(1,1,1),
covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),
omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),error.model="constant")
saemix.options<-list(algorithm=c(1,0,0),seed=632545,
save=FALSE,save.graphs=FALSE)
saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)
# Estimating the individual parameters using the result of saemix [的结果的saemix中使用的各个参数估计]
# & returning the result in the same object[返回的结果在同一个对象]
saemix.fit<-map.saemix(saemix.fit)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|