llgq.saemix(saemix)
llgq.saemix()所属R语言包:saemix
Log-likelihood using Gaussian Quadrature
利用高斯求积数似然
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimate the log-likelihood using Gaussian Quadrature (multidimensional grid)
对数似然估计使用高斯正交(多维网格)
用法----------Usage----------
llgq.saemix(saemixObject)
参数----------Arguments----------
参数:saemixObject
an object returned by the saemix function
返回的对象saemix的函数
Details
详细信息----------Details----------
The likelihood of the observations is estimated using Gaussian Quadrature (see documentation).
估计高斯正交(见文档)的可能性的意见。
值----------Value----------
the log-likelihood estimated by Gaussian Quadrature
对数似然估计高斯求积
(作者)----------Author(s)----------
Emmanuelle Comets <emmanuelle.comets@inserm.fr>, Audrey Lavenu, Marc Lavielle.
参考文献----------References----------
Monolix32_UsersGuide.pdf (http://software.monolix.org/sdoms/software/)
参见----------See Also----------
SaemixObject,saemix,llis.saemix
SaemixObject,saemix,llis.saemix
实例----------Examples----------
# Running the main algorithm to estimate the population parameters[运行的主要算法来估计总体参数]
data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=c("Id"),name.predictors=c("Dose","Time"),
name.response=c("Concentration"),name.covariates=c("Weight","Sex"),
units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")
model1cpt<-function(psi,id,xidep) {
dose<-xidep[,1]
tim<-xidep[,2]
ka<-psi[id,1]
V<-psi[id,2]
CL<-psi[id,3]
k<-CL/V
ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))
return(ypred)
}
saemix.model<-saemixModel(model=model1cpt,
description="One-compartment model with first-order absorption",
psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3,byrow=TRUE,
dimnames=list(NULL, c("ka","V","CL"))),transform.par=c(1,1,1),
covariate.model=matrix(c(0,1,0,0,0,0),ncol=3,byrow=TRUE),fixed.estim=c(1,1,1),
covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),
omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE), error.model="constant")
saemix.options<-list(seed=632545,save=FALSE,save.graphs=FALSE)
saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)
# Estimating the likelihood by Gaussian Quadrature using the result of saemix [估计可能高斯求积使用saemix的结果的]
# & returning the result in the same object[返回的结果在同一个对象]
saemix.fit<-llgq.saemix(saemix.fit)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|