BCssvd(s4vd)
BCssvd()所属R语言包:s4vd
Biclustering via sparse singular value decomposition
通过稀疏的奇异值分解的双分群
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The function performs a biclustering of the data matrix by sparse singular value decomposition.
该函数执行的数据稀疏矩阵奇异值分解的双分群。
用法----------Usage----------
## S4 method for signature 'matrix,BCssvd'
biclust(x,method=BCssvd(),
K=10,
threu = 1,
threv = 1,
gamu = 0,
gamv =0,
u0 = svd(X)$u[,1],
v0 = svd(X)$v[,1],
merr = 10^(-4),
niter = 100)
参数----------Arguments----------
参数:x
the matrix to be clustered
以进行聚类的矩阵
参数:method
calls the BCssvd() method
调用BCssvd()方法
参数:K
number of SSVD-layers
SSVD层的数
参数:threu
type of penalty (thresholding rule) for the left singular vector, 1 = (Adaptive) LASSO (default) 2 = hard thresholding
种类的刑罚的左奇异向量,1 =(自适应)LASSO(默认)2 =硬阈值(阈值规则)
参数:threv
type of penalty (thresholding rule) for the right singular vector, 1 = (Adaptive) LASSO (default) 2 = hard thresholding
种类的刑罚的右奇异向量,=(自适应)LASSO(默认)2 = 1硬阈值(阈值规则)
参数:gamu
weight parameter in Adaptive LASSO for the left singular vector, nonnegative constant (default = 0, LASSO)
重参数的自适应LASSO的左奇异向量,非负常数(默认值= 0,LASSO)
参数:gamv
weight parameter in Adaptive LASSO for the right singular vector, nonnegative constant (default = 0, LASSO)
重参数的自适应LASSO的右奇异向量,非负常数(默认值= 0,LASSO)
参数:u0
initial left singular vector
最初的左奇异向量
参数:v0
initial right singular vector
最初的右奇异向量
参数:merr
threshold to decide convergence
阈值,决定收敛
参数:niter
maximum number of iterations
最大迭代次数
值----------Value----------
Returns an Biclust object.
返回一个Biclust对象。
(作者)----------Author(s)----------
Adaptation of original code from Mihee Lee by Martin Sill \
<a href="mailto:m.sill@dkfz.de">m.sill@dkfz.de</a>
参考文献----------References----------
Mihee Lee, Haipeng Shen, Jianhua Z. Huang and J. S. Marron1 "Biclustering via Sparse Singular Value Decomposition", Biometrics, 2010
参见----------See Also----------
biclust, Biclust
biclust,Biclust
实例----------Examples----------
# example data set according to the simulation study in Lee et al. 2010[例如数据集,根据Lee等人的模拟研究。 2010]
# generate artifical data set and a correspondig biclust object[产生人工数据集和correspondig的biclust对象]
u <- c(10,9,8,7,6,5,4,3,rep(2,17),rep(0,75))
v <- c(10,-10,8,-8,5,-5,rep(3,5),rep(-3,5),rep(0,34))
u <- u/sqrt(sum(u^2))
v <- v/sqrt(sum(v^2))
d <- 50
set.seed(1)
X <- (d*u%*%t(v)) + matrix(rnorm(100*50),100,50)
params <- info <- list()
RowxNumber <- matrix(rep(FALSE,100),ncol=1)
NumberxCol <- matrix(rep(FALSE,50),nrow=1)
RowxNumber[u!=0,1] <- TRUE
NumberxCol[1,v!=0] <- TRUE
Number <- 1
ressim <- BiclustResult(params,RowxNumber,NumberxCol,Number,info)
#perform s4vd biclustering [执行s4vd双分群]
system.time( ress4vd <- biclust(X,method=BCs4vd,pcerv=0.5,pceru=0.5,ss.thr=c(0.6,0.65),steps=500,pointwise=FALSE,nbiclust=1,savepath=TRUE))
#perform s4vd biclustering with fast pointwise stability selection[执行s4vd双分群选择快速逐点稳定]
system.time( ress4vdpw <- biclust(X,method=BCs4vd,pcerv=0.5,pceru=0.5,ss.thr=c(0.6,0.65),steps=500,pointwise=TRUE,nbiclust=1))
#perform ssvd biclustering[执行SSVD双分群]
system.time(resssvd <- biclust(X,BCssvd,K=1))
#agreement of the results with the simulated bicluster[协议的结果与模拟bicluster]
jaccardind(ressim,ress4vd)
jaccardind(ressim,ress4vdpw)
jaccardind(ressim,resssvd)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|