uGARCHforecast-class(rugarch)
uGARCHforecast-class()所属R语言包:rugarch
class: Univariate GARCH Forecast Class
类别:单变量GARCH模型预测类
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Class for the univariate GARCH forecast.
一类单变量GARCH预测。
类对象----------Objects from the Class----------
A virtual Class: No objects may be created from it.
可能会从它创建一个虚拟类:没有对象。
扩展----------Extends----------
Class GARCHforecast, directly. Class rGARCH, by class GARCHforecast, distance 2.
类GARCHforecast,直接。类rGARCH类GARCHforecast,距离2。
方法----------Methods----------
as.array signature(x = "uGARCHforecast"): Extracts the forecast array with matrix column dimensions equal to the n.ahead value and row dimension 2 (sigma and series forecast), and array
as.arraysignature(x = "uGARCHforecast"):中提取的预测值和行维度n.ahead 2(SIGMA系列和预测)等于矩阵列的尺寸,阵列和阵列
as.data.frame signature(x = "uGARCHforecast"):
as.data.framesignature(x = "uGARCHforecast"):
as.list signature(x = "uGARCHforecast"):
as.listsignature(x = "uGARCHforecast"):
plot signature(x = "uGARCHforecast", y = "missing"): Forecast plots with n.roll optional argument indicating the rolling
图signature(x = "uGARCHforecast", y = "missing"):预测图n.roll可选参数,表示滚动
fpm signature(object = "uGARCHforecast"):
FPMsignature(object = "uGARCHforecast"):
show signature(object = "uGARCHforecast"):
显示signature(object = "uGARCHforecast"):
注意----------Note----------
There are 3 main extractor functions for the uGARCHforecast object which is admittedly the most complex in the package as a result of allowing for rolling forecasts. The as.array extracts an array object where each page of the array represents a roll. The as.list method works similarly returns instead a list object. There are no additional arguments to these extractor functions and they will return all the forecasts. The as.data.frame method on the other hand provides for 5 additional arguments. The argument which indicates the type of forecast value to return(with valid valued being “sigma” and “series”). The rollframe option is for the rolling frame to return (with 0 being the default no-roll) and allows either a valid numeric value or alternatively the character value “all” for which additional options then come into play. When “all” is chosen in the rollframe argument, the data.frame returned may be time aligned (logical option aligned) in which case the logical option prepad indicates whether to pad the values prior to the forecast start time with actual values or NA (value FALSE). Finally, the type option controls whether to return all forecasts (value 0, default), return only those forecasts which have in sample equivalent data (value 1) or return only those values which are truly forecasts without in sample data (value 2). Depending on the intended usage of the forecasts, some or all these options may be useful to the user when extracting data from the forecast object.<br> The plot method takes additional arguments which and n.roll indicating which roll frame to plot.
有3个主要的提取为uGARCHforecast对象,这是公认的最复杂的程序包中作为结果,允许滚动预测功能。 as.array提取一个数组对象的数组,每个页面表示一卷。 as.list方法类似,而不是返回一个列表对象。有没有额外的参数,这些提取功能,他们将返回所有的预测。 as.data.frame方法,另一方面提供5个额外的参数。的参数which表示返回类型的预测值(与有效的价值是“西格玛”和“系列”)。 rollframe选项是返回滚动框(0为默认的无辊),并允许一个有效的数值或者字符值“所有”额外选项,然后开始发挥作用。 “all”时,选择rollframe参数,返回的数据框可能是时间对齐(逻辑选项“aligned),在这种情况下,合理的选择prepad是否垫开始时间之前的预测值与实际值或NA(数值FALSE)。最后,type选项控制是否将返回所有的预测(0值,默认值),只返回那些在样品的等效数据的预测(值为1),或没有在样本数据,只返回那些是真正的预测值(值2)。根据使用的预测,部分或所有这些选项可能对用户有用的预报对象中提取数据的时候。<BR>的图方法需要额外的参数which和n.roll表明,滚架图。
(作者)----------Author(s)----------
Alexios Ghalanos
参见----------See Also----------
Classes uGARCHfit, uGARCHsim and uGARCHspec.
类uGARCHfit,uGARCHsim和uGARCHspec。
实例----------Examples----------
## Not run: [#不运行:]
# Basic GARCH(1,1) Spec[基本GARCH(1,1)规格]
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec)
forc = ugarchforecast(fit, n.ahead=20)
forc
head(as.data.frame(forc))
#plot(forc, which = "all")[曲线(FORC =“所有”)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|