uGARCHdistribution-class(rugarch)
uGARCHdistribution-class()所属R语言包:rugarch
class: Univariate GARCH Parameter Distribution Class
类别:单变量GARCH参数分布类
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Class for the univariate GARCH Parameter Distribution.
单变量GARCH类参数分布。
类对象----------Objects from the Class----------
A virtual Class: No objects may be created from it.
可能会从它创建一个虚拟类:没有对象。
扩展----------Extends----------
Class "GARCHdistribution", directly. Class "rGARCH", by class "GARCHdistribution", distance 2.
类"GARCHdistribution",直接。类"rGARCH",通过类“GARCHdistribution”,距离2。
方法----------Methods----------
as.data.frame signature(x = "uGARCHdistribution"):
as.data.framesignature(x = "uGARCHdistribution"):
plot signature(x = "uGARCHdistribution", y = "missing"):
图signature(x = "uGARCHdistribution", y = "missing"):
show signature(object = "uGARCHdistribution"):
显示signature(object = "uGARCHdistribution"):
注意----------Note----------
The as.data.frame function takes optionally 2 additional arguments, namely window which indicates the particular distribution window number for which data is required (is usually just 1 unless the recursive option was used), and which indicating the type of data required. Valid values for the latter are “rmse” for the root mean squared error between simulation fit and actual parameters, “stats” for various statistics computed for the simulations such as log likelihood, persistence, unconditional variance and mean, “coef” for the estimated coefficients (i.e. the parameter distribution and is the default choice), and “coefse” for the estimated robust standard errors of the coefficients (i.e. the parameter standard error distribution).<br> The plot method offers 4 plot types, namely, Parameter Density Plots (take window as additional argument), Bivariate Plots (take window as additional argument), Stats and RMSE (only when recursive option used) Plots. The standard option for which is used, allowing for a numeric arguments
as.data.frame功能可选2个额外的参数,即window数据是必需的,表示特定的分配窗口(通常只是1,除非使用递归选项),和which指示所需的数据的类型。有效值后者是“均方根误差均方误差之间的的模拟配合和实际参数的模拟,如对数似然,持久性的,无条件的方差和均值计算各种统计数据的”统计“,”系数“根”的估计系数(即参数分布是默认选项),和“coefse”的稳健标准误差的估计系数(即参数标准误差分布)。参考图法提供了4个图形类型,即,参数密度图(以window作为额外的参数),二元图(采取window作为额外的参数),统计和RMSE(仅当使用递归选项)图。 which标准选项时,允许一个数字参数
(作者)----------Author(s)----------
Alexios Ghalanos
参见----------See Also----------
Classes uGARCHforecast, uGARCHfit and uGARCHspec.
类uGARCHforecast,uGARCHfit和uGARCHspec。
实例----------Examples----------
## Not run: [#不运行:]
data(sp500ret)
spec = ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(1,1), arfima=FALSE, include.mean=TRUE,
archm = FALSE, archpow = 1), distribution.model="std")
fit = ugarchfit(data=sp500ret[, 1, drop = FALSE], out.sample = 0,
spec = spec, solver = "solnp")
dist = ugarchdistribution(fit, n.sim = 2000, n.start = 50, m.sim = 5)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|