rbf(RSNNS)
rbf()所属R语言包:RSNNS
Create and train a radial basis function (RBF) network
创建和训练的径向基函数(RBF)网络
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The use of an RBF network is similar to that of an mlp. The idea of radial basis function networks comes from function interpolation theory. The RBF performs a linear combination of
RBF网络的使用是类似的mlp。径向基函数神经网络的想法来自函数插值理论。的RBF执行的线性组合
用法----------Usage----------
## Default S3 method:[默认方法]
rbf(x, y, size=c(5), maxit=100, initFunc="RBF_Weights", initFuncParams=c(0,
1, 0, 0.02, 0.04), learnFunc="RadialBasisLearning",
learnFuncParams=c(1e-05, 0, 1e-05, 0.1, 0.8),
updateFunc="Topological_Order", updateFuncParams=c(0),
shufflePatterns=TRUE, linOut=TRUE, inputsTest, targetsTest, ...)
参数----------Arguments----------
参数:x
a matrix with training inputs for the network
矩阵的网络培训投入
参数:y
the corresponding targets values
相应的指标值
参数:size
number of units in the hidden layer(s)
隐藏层中的单位数目(S)
参数:maxit
maximum of iterations to learn
最大的迭代学习
参数:initFunc
the initialization function to use
使用初始化函数
参数:initFuncParams
the parameters for the initialization function
初始化函数的参数
参数:learnFunc
the learning function to use
学习功能使用
参数:learnFuncParams
the parameters for the learning function
学习功能的参数
参数:updateFunc
the update function to use
使用更新功能
参数:updateFuncParams
the parameters for the update function
更新功能的参数
参数:shufflePatterns
should the patterns be shuffled?
应的模式被打乱?
参数:linOut
sets the activation function of the output units to linear or logistic
设置的激活函数的输出单元的直链或MF
参数:inputsTest
a matrix with inputs to test the network
测试网络的输入矩阵
参数:targetsTest
the corresponding targets for the test input
测试输入相应的目标
参数:...
additional function parameters (currently not used)
附加功能参数(目前没有使用)
Details
详细信息----------Details----------
rbf: RBF networks are feed-forward networks with one hidden layer. Their activation is not sigmoid (as in MLP), but radially symmetric (often gaussian). Thereby, information is represented locally in the network (in contrast to MLP, where it is globally represented). Advantages of RBF networks in comparison to MLPs are mainly, that the networks are more interpretable, training ought to be easier and faster, and the network only activates in areas of the feature space where it was actually trained, and has therewith the possibility to indicate that it "just doesn't know".
rbf:RBF网络是一个隐含层的前馈网络。他们的激活是不乙状结肠(MLP),径向对称的(经常高斯)。由此,信息是表示在本地网络中的(MLP,其中全局代表对比)。 RBF网络的优点相比,放置MLP主要网络更可解释,培训应该更容易和更快,并在网络中仅激活的特征空间中,它实际上是训练的领域,并具有与其的可能性,以指示“只是不知道”。
Initialization of an RBF network can be difficult and require prior knowledge. Before use of this function, you might want to read pp 172-183 of the SNNS User Manual 4.2. The initialization is performed in the current implementation by a call to RBF_Weights_Kohonen(0,0,0,0,0) and a successive call to the given initFunc (usually RBF_Weights). If this initialization doesn't fit your needs, you should use the RSNNS low-level interface to implement your own one. Have a look then at the demos/examples. Also, we note that depending on whether linear or logistic output is chosen, the initialization parameters have to be different (normally c(0,1,...) for linear and c(-4,4,...) for logistic output).
RBF网络的初始化可以是困难的,需要事先了解。在使用此功能之前,你可能想读的SNNS用户手册4.2页172-183。初始化是在当前的实现给定的RBF_Weights_Kohonen(0,0,0,0,0)(通常是initFunc),调用RBF_Weights和连续通话。如果初始化不符合您的需求,你应该使用RSNNS的低层次的接口,以实现自己的一个。然后看看在演示/例子。此外,我们注意到,根据是否选择线性或逻辑输出,初始化参数必须是不同的(通常是“c(0,1,...)线性和c(-4,4,...)后勤输出)。
值----------Value----------
rbf.default: an rsnns object.
rbf.default:rsnns对象。
参考文献----------References----------
http://www.ra.cs.uni-tuebingen.de/SNNS/
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|