sfa2(rSFA)
sfa2()所属R语言包:rSFA
The SFA2 algorithm, SFA with degree 2 expansion.
SFA2算法,SFA 2个扩展程度。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Y = sfa2(X) performs expanded Slow Feature Analysis on the input data X and returns the output signals Y ordered by increasing temporal variation, i.e. the first signal Y[,1] is the slowest varying one, Y[,2] the next slowest varying one and so on. The input data have to be organized with each variable in a column and each data (time) point in a row, i.e. X(t,i) is the value of variable i at time t. By default an expansion to the space of 2nd degree polynomials is done, this can be changed by using different functions for xpDimFun and sfaExpandFun.
Y = sfa2(X)的执行扩大慢特征分析上的输入数据X,并返回的输出信号Y通过增加的时间变化的排列的,即第一信号Y [1]是最慢的不同的一个,Y [2]下最慢的变化1等。组织在一列中的每个变量的输入数据,并在一行中的每个数据点(时间),即X(吨,i)的变量i的值是在时间t。默认情况下,扩展的第二次多项式的空间,这是可以改变的使用不同的的功能xpDimFun和sfaExpandFun的。
用法----------Usage----------
sfa2(x, method = "SVDSFA", ppType = "PCA",
xpDimFun = xpDim, sfaExpandFun = sfaExpand)
参数----------Arguments----------
参数:x
input data
输入数据
参数:method
eigenvector calculation method: ="SVDSFA" for singular value decomposition (recommended) or ="GENEIG" for generalized eigenvalues (unstable!). GENEIG is not implemented in the current version, since R lacks an easy option to calculate generalized eigenvalues.
特征向量的计算方法:=“SVDSFA”的奇异值分解(推荐)或=“GENEIG”的广义特征值(unstable!)。 GENEIG在当前版本中没有实现,因为R没有一个简单的选项来计算广义特征值。
参数:ppType
preprocessing type: ="PCA" (principal component analysis) or ="SFA1" (linear sfa)
预处理类型:“PCA(主成分分析),或=”SFA1“(线性SFA)
参数:xpDimFun
function to calculate dimension of expanded data
功能扩展的数据来计算尺寸
参数:sfaExpandFun
function to expand data
功能扩展数据
值----------Value----------
list sfaList with all SFA information, among them
列表sfaList与所有SFA信息,其中
参数:<code>y</code>
a matrix containing the output Y (as described above) <tr valign="top"><td>-</td>
含有的输出Y(如上面所述)的矩阵<tr valign="top"> <TD>-</ TD>
all input parameters to sfa2Create <tr valign="top"><td>-</td>
所有的输入参数,以sfa2Create<tr valign="top"> <TD> -</ TD>
all elements of sfaList as specified in sfa2Step
sfaList的所有元素中指定的sfa2Step
参见----------See Also----------
sfa2Step sfa2Create sfaExecute sfa1
sfa2Stepsfa2CreatesfaExecutesfa1
实例----------Examples----------
## prepare input data for simple demo[#简单的演示准备输入数据]
t=seq.int(from=0,by=0.011,to=2*pi)
x1=sin(t)+cos(11*t)^2
x2=cos(11*t)
x=data.frame(x1,x2)
## perform sfa2 algorithm with data[,#执行sfa2算法的数据]
res = sfa2(x)
## plot slowest varying function of result[#图最慢变函数的结果]
plot(t, res$y[,1],type="l",main="output of the slowest varying function")
## see http://www.scholarpedia.org/article/Slow_feature_analysis#The_algorithm[#见http://www.scholarpedia.org/article/Slow_feature_analysis#The_algorithm]
## for detailed description of this example[#这个例子详细说明]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|