robpredict(rsae)
robpredict()所属R语言包:rsae
Robust prediction of random effects, fixed effects, and area-specific means
鲁棒预测的随机效应,固定效应和领域的具体办法,
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The function robpredict robustly predicts the random effects, fixed effects, and area-specific means under the model. As concerned with robustly predicting the realizations of the random effects, we rely on the method of Copt and Victoria-Feser (cf. Heritier et al., 2009, 113–114); not the method of Sinha and Rao (2009).
函数robpredict稳健预测模型下随机效应,固定效应和区域的具体手段。至于强劲预测的随机效果的实现,我们依靠的科普特人的方法和维多利亚 - Feser的(参见Heritier等,2009,113-114);辛哈和Rao(2009)的方法。
用法----------Usage----------
robpredict(fit, areameans=NULL, k=NULL, reps=NULL)
## S3 method for class 'meanssaemodel'
print(x, digits=4, ...)
## S3 method for class 'meanssaemodel'
plot(x, y=NULL, type="e", sort=NULL, ...)
## S3 method for class 'meanssaemodel'
residuals(object, ...)
参数----------Arguments----------
参数:fit
a fitted SAE model; object of class fitsaemodel
一个装SAE模型对象的类fitsaemodel
参数:areameans
numeric matrix (typically, with area-level means); the no. of rows must be equal to the no. of areas; the no. of columns must be equal to the no. of fixed-effects coefficients (incl. intercept). By default: areadata=NULL, i.e., predictions are based on those data that have been used to estimate the model.
数字矩阵(通常情况下,区级手段);没有。行必须等于无。区域;没有了。列必须有等于无。的固定效应系数(含截距)。默认情况下:areadata=NULL,即预测是根据这些数据已被用来估计模型。
参数:k
robustness tuning constant (of the Huber psi-function) for robust prediction. Notice that k does not necessarily be the same as the k that has been used in fitsaemodel. By default, k is equal to the tuning constant used in estimating the model parameters.
鲁棒性时间常数(胡贝尔psi的功能)为强健预测。注意,k不一定是相同的k已用于fitsaemodel。默认情况下,k是相等的时间常数,用于估计模型的参数。
参数:reps
number (integer) of bootstrap replicates for mean squared prediction error; default: reps=NULL
重复数字(整数)的引导均方预测误差;默认:reps=NULL
参数:x
object of the class "meanssaemodel"; this argument is only used in the print method.
类的对象"meanssaemodel",这种说法只用在print方法。
参数:digits
integer, defining the number of decimal places to be shown in the print method (default: digits=4)
整数,显示在print方法定义的小数位数(默认:digits=4)
参数:y
has no meaning, yet! (default: y=NULL; needs to included in the args list, because it is part of plot's generic arg definition)
已经没有任何意义,但! (默认:y=NULL;需要包含的参数列表中,因为它是的图的通用ARG定义的一部分)
参数:type
character specifying the plot method; either "e" (error bars; default) or "l" (lines).
字符,指定plot方法是"e"(误差线,默认)或"l"(系)。
参数:sort
only used in the plot method; if sort="means", the predicted means are ploted in ascending order (default: sort=NULL); similarly, with sort="fixef" and sort="ranef" the predicted means are sorted along the fixed effects or the random effects, respectively
仅用于plot方法; sort="means"如果,预测的方法ploted按升序(默认值:sort=NULL),同样,与sort="fixef"和sort="ranef"预测的方法排序分别沿固定效应或随机效应,
参数:object
object of the class fitsaemodel; a fitted model used in the residuals method.
类的对象fitsaemodel;拟合模型的用于residuals方法。
参数:...
not used
不使用
Details
详细信息----------Details----------
The robpredict function enables the following modes of prediction:
robpredict功能,可以预测以下模式:
if areameans=NULL, then the predictions are exclusively based on the sample values,
如果areameans=NULL,然后预测完全是基于对样本值,
if robpredict is called with areameans (i.e., matrix with area-specific means of the auxiliary data of conformable size), then the fixed-effect predictions and thus also the predictions of the area-specific means are based on the auxiliary data,
如果robpredict被称为用areameans(即,矩阵的特定于区域的保形的大小的辅助数据的装置),然后固定效果的预测,由此也确定预测的区域的具体手段是的基础上的辅助数据,
if, in addition to specifying areameans, one specifies also the number of bootstrap replications (i.e., reps; some positive integer), the function computes area-specific mean square prediction error (MSPE) estimates for the area-level means. The MSPE is obtained, in line with Sinha and Rao (2009), from a (robust) parametric bootstrap; see Lahiri (2003) and Hall and Maiti (2006) for more details.
此外指定areameans的,如果在“指定的引导复制(即reps;正整数),该函数计算面积均方预测误差(MSPE)的估计区域级别的手段。辛哈和Rao(2009),MSPE是,从参数引导(强大);拉希莉(2003年)和霍尔和买提(2006年)的更多细节。
The tuning constant k regulates the degree of robustness (i.e., degree of winsorization of the Huber psi-function) when predicting the random effects. If k is sufficiently large (ideally, if k is equal to infinity), the predictions correspond to the EBLUP.
的时间常数k调节程度的鲁棒性(即胡贝尔PSI-函数的极值调整的程度),当预测的随机效果。如果k是足够大的(理想的情况下,如果k是等于无穷大),预测对应的EBLUP。
值----------Value----------
Instance of the S3 class meanssaemodel
实例S3类meanssaemodel
(作者)----------Author(s)----------
Tobias Schoch
参考文献----------References----------
实例----------Examples----------
#generate the synthetic data/model[生成的合成数据/模型]
mymodel <- makedata()
#compute Huber M-estimation type estimates of the model "mymodel"[计算胡贝尔M-估计估计模式“mymodel”]
#robustness tuning constant k = 2[鲁棒性调整常数k = 2]
myfittedmodel <- fitsaemodel("huberm", mymodel, k=2)
myfittedmodel
#get a summary of the model[的模型中得到的摘要]
summary(myfittedmodel)
#robustly predict the random effects and the area-level means. [强劲预测的随机效应和区域级别手段。]
#Here, we choose the robustness tuning constant k equal to 1.8[在这里,我们选择的稳健性调整常数k等于1.8]
mypredictions <- robpredict(myfittedmodel, k=1.8)
mypredictions
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|