找回密码
 注册
查看: 299|回复: 0

R语言 rriskDistributions包 get.norm.sd()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-28 21:12:04 | 显示全部楼层 |阅读模式
get.norm.sd(rriskDistributions)
get.norm.sd()所属R语言包:rriskDistributions

                                        Fitting standard deviation of a normal distribution from one or more quantiles and known mean
                                         从一个或更多的位数的和公知的平均拟合标准偏差的正态分布

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

get.norm.sd returns the standard deviation of a normal distribution where the pth percentiles match with the quantiles q.
get.norm.sd返回一个正常的分布的标准偏差,其中p百分位匹配位数q。


用法----------Usage----------


  get.norm.sd(p=c(0.025,0.5,0.975), q, show.output=TRUE,
    plot=TRUE,
    fit.weights=rep(1,length(p)),scaleX=c(0.1,0.9),...)



参数----------Arguments----------

参数:p
numeric, vector of probabilities.
数字的概率,向量。


参数:q
numeric, vector of quantiles corresponding to p.
向量的数字,位数对应于P。


参数:show.output
logical, if TRUE the optim result will be printed (default vaule is TRUE).
逻辑,如果TRUE optim的结果将被打印(默认情况下,徐玉梅,是TRUE)。


参数:plot
logical, if TRUE the graphical diagnostics will be plotted (default value is TRUE).
逻辑,如果TRUE将被绘制的图形诊断(默认值是TRUE)。


参数:fit.weights
numerical vector of the same length as a probabilities vector p containing positive values for weighting quantiles. By default all quantiles will be weighted by 1.
相同的长度为一个数值向量概率矢量p含有正的值进行加权分位数。默认情况下,所有的位数将加权1。


参数:scaleX
numerical vector of the length 2 containing values (from the open interval (0,1)) for scaling quantile-axis (relevant only if plot=TRUE). The smaller the left value, the further the graph is extrapolated within the lower percentile, the greater the right value, the further it goes within the upper percentile.
数值向量的长度位数轴缩放2的值(在开区间(0,1))(相关的只有plot=TRUE)。左边的值较小,进一步在图形内的较低百分推断,更大的权值,它进一步去内上部百分。


参数:...
further arguments passed to the functions plot and points (relevant only if plot=TRUE).
进一步的参数传递的功能plot和只有points(相关plot=TRUE)。


Details

详细信息----------Details----------

The number of probabilities and the number of quantiles must be identical and should be at least two. get.norm.sd uses the central limit theorem and the linear regression. <br> <br> If show.output=TRUE the output of the function lm will be shown. <br> <br> The items of the probability vector p should lie between 0 and 1. <br> <br> The items of the weighting vector fit.weights should be positive values. <br> <br> The function will be meaningful only if the quantile comes from a normal distribution.
概率和分位数的数目的数目必须是相同的,并且应该是至少两个。 get.norm.sd使用中心极限定理和线性回归。参考<br>如果show.output=TRUE输出的功能lm将显示。是参考参考本的的概率向量p件应位于0和1之间。参考参考项目的权重向量fit.weights应该是正面的价值观。 <BR> <BR>的功能将是有意义的,只有当位数的正态分布。


值----------Value----------

Returns an estimated standard deviation or missing value
返回一个估计的标准偏差或遗漏值


注意----------Note----------

It should be noted that the data must be normally distributed, or the central limt theorem must hold for large (enough) samples sizes.
应当指出,数据必须正态分布,或中央limt定理必须保持大的(足够的)样品尺寸。


(作者)----------Author(s)----------



Matthias Greiner <a href="mailto:matthias.greiner@bfr.bund.de">matthias.greiner@bfr.bund.de</a>
(BfR), <br> Katharina Schueller
<a href="mailto:schueller@stat-up.de">schueller@stat-up.de</a> (<acronym><span class="acronym">STAT-UP</span></acronym>
Statistical Consulting), <br> Natalia Belgorodski
<a href="mailto:belgorodski@stat-up.de">belgorodski@stat-up.de</a> (<acronym><span class="acronym">STAT-UP</span></acronym>
Statistical Consulting)




参见----------See Also----------

See pnorm for distribution implementation details.
见pnorm分布实施细节。


实例----------Examples----------


q<-qnorm(p=c(0.025,0.5,0.975),mean=0,sd=2)
X11(width=9,height=6)
par(mfrow=c(2,3))
get.norm.sd(q=q)
get.norm.sd(q=q,scaleX=c(0.0001,0.9999))
get.norm.sd(q=q,fit.weights=c(10,1,10))
get.norm.sd(q=q,fit.weights=c(1,10,1))
get.norm.sd(q=q,fit.weights=c(100,1,100))
get.norm.sd(q=q,fit.weights=c(1,100,1))

q<-qnorm(p=c(0.025,0.5,0.975),mean=176,sd=15)
X11(width=9,height=6)
par(mfrow=c(2,3))
get.norm.sd(q=q)
get.norm.sd(q=q, fit.weights=c(10,1,10))
get.norm.sd(q=q, fit.weights=c(1,10,1))
get.norm.sd(q=q, fit.weights=c(100,1,100))
get.norm.sd(q=q, fit.weights=c(1,100,1))

# The estimating model is not suitable for the following quantiles.[估算模型是不适用于下列位数。]
# Because the quantile is unsymmetrical, which could not be from a normally distributed data.[由于分位数是不对称的,不能从正常分布的数据。]
q<-c(-2,30,31)
X11(width=9,height=6)
par(mfrow=c(2,3))
get.norm.sd(q=q)
get.norm.sd(q=q,fit.weights=c(10,1,10))
get.norm.sd(q=q, fit.weights=c(1,10,1),scaleX=c(0.0001,0.9999))
get.norm.sd(q=q,fit.weights=c(100,1,100))
get.norm.sd(q=q, fit.weights=c(1,100,1),scaleX=c(0.0001,0.9999))

# The estimating from an actually exponetial distributed data[估计从一个实际的数abc分布数据]
x.exp<-rexp(n=10,rate=5)
mean(x.exp)
sd(x.exp)
q<-quantile(x.exp,c(0.025,0.5,0.975))
X11(width=9,height=6)
par(mfrow=c(2,3))
get.norm.sd(q=q)
get.norm.sd(q=q,fit.weights=c(1,10,1))
get.norm.sd(q=q,fit.weights=c(10,1,10))
get.norm.sd(q=q,fit.weights=c(1,100,1))
get.norm.sd(q=q,fit.weights=c(100,1,100))

# other exmamples[其他exmamples]
q<-qnorm(p=c(0.025,0.5,0.975),mean=1,sd=1)
get.norm.sd(q=q)

q<-qnorm(p=c(0.025,0.5,0.975),mean=1,sd=0.5)
get.norm.sd(q=q)

q<-qnorm(p=c(0.025,0.5,0.975),mean=0.01,sd=0.1)
get.norm.sd(q=q)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 02:15 , Processed in 0.026011 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表