PcaLocantore-class(rrcov)
PcaLocantore-class()所属R语言包:rrcov
Class "PcaLocantore" Spherical Principal Components
的类“PcaLocantore”心主成分
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The Spherical Principal Components procedure was proposed by Locantore et al., (1999) as a functional data analysis method. The idea is to perform classical PCA on the the data, \ projected onto a unit sphere. The estimates of the eigenvectors are consistent and the procedure is extremly fast. The simulations of Maronna (2005) show that this method has very good performance.
球面主成分方法提出由Locantore等。,(1999年)作为一个功能的数据分析方法。我们的想法是,执行古典的数据上的PCA,\投影到单位球面上。的本征值的估计是一致的,过程的极端快的。 Maronna(2005)的模拟表明,该方法具有很好的性能。
类对象----------Objects from the Class----------
Objects can be created by calls of the form new("PcaLocantore", ...) but the usual way of creating PcaLocantore objects is a call to the function PcaLocantore which serves as a constructor.
可以通过检测的形式new("PcaLocantore", ...)“可是通常的方式创建”PcaLocantore对象是PcaLocantore作为构造函数的功能调用创建的对象。
插槽----------Slots----------
delta: Accuracy parameter
delta:精度参数
quan: Object of class "numeric" The quantile h used throughout the algorithm
quan类的对象"numeric"位数h二手整个算法
from the "Pca" class.
从"Pca"类。
扩展----------Extends----------
Class "PcaRobust", directly. Class "Pca", by class "PcaRobust", distance 2.
类"PcaRobust",直接。类"Pca",类的“PcaRobust”,距离2。
方法----------Methods----------
getQuan signature(obj = "PcaLocantore"): ...
getQuan signature(obj = "PcaLocantore")...
(作者)----------Author(s)----------
Valentin Todorov <a href="mailto:valentin.todorov@chello.at">valentin.todorov@chello.at</a>
参考文献----------References----------
An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. URL http://www.jstatsoft.org/v32/i03/.
参见----------See Also----------
PcaRobust-class, Pca-class, PcaClassic, PcaClassic-class
PcaRobust-class,Pca-class,PcaClassic,PcaClassic-class
实例----------Examples----------
showClass("PcaLocantore")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|