rrBlupRotation(rrBlupMethod6)
rrBlupRotation()所属R语言包:rrBlupMethod6
rrBlupRotation – linear transformation for the adjusted means
rrBlupRotation - 线性变换的调整手段
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function implements the rotation described in Piepho et al. (2011) thus the assumption of R = I sigma2
此功能实现记载的旋转在Piepho等。 (2011)的假设R = I sigma2
用法----------Usage----------
rrBlupRotation(y, X = matrix(1,nrow=n, ncol=1), Z, R)
参数----------Arguments----------
参数:y
Numeric vector with adjusted means of the genotypes.
与调整后的装置,所述基因型数值向量。
参数:X
Design matrix of fixed effects, including the intercept. By default, this is an all 1 column vector for the intercept.
固定效应的设计矩阵,其中包括拦截。默认情况下,这是一个全1的列向量为截距。
参数:Z
Matrix assigning marker genotypes to phenotypes in y. The dimension of the matrix must be no. phenotypes (rows) times no. markers (columns). The coding must be 1 and -1 for the two homozygous genotypes.
矩阵分配标记基因型表型y。的矩阵的维数必须是否定的。表型(行)。标记(列)。该编码必须是1和-1的两个纯合基因型。
参数:R
Variance-covariance structure of the adjusted means
方差 - 协方差结构的调整手段
Details
详细信息----------Details----------
Please see Piepho et al. (2011) and Schulz-Streeck et al. (2012) for details on the rotation approach. The variance-covariance structure R can, for example, be obtained with the function vcov from fitted (mer) model objects, or with the output option COV for the LSMEANS statement
请看到Piepho等。 (2011年)和舒尔茨司缀克提等。 (2012年)的旋转方式的详细信息。方差 - 协方差结构R可以,例如,获得的功能vcov(mer)模型对象,从装或输出选项COV的 LSMEANS语句
值----------Value----------
A list with three components
三部分组成列表
y_tilda Numeric vector with the rotated adjusted means,
y_tilda数值向量与旋转调整装置,
X_tilda Rotated design matrix of the fixed effects and
X_tilda旋转设计矩阵的固定效果,
Z_tilda Rotated design matrix with the marker information
Z_tilda旋转矩阵设计的标记信息
(作者)----------Author(s)----------
Torben Schulz-Streeck, Boubacar Estaghvirou, Frank Technow
参见----------See Also----------
rrBlupMethod6,rrBlupM6
rrBlupMethod6,rrBlupM6
实例----------Examples----------
## simulate a small data set (250 observations, 300 markers)[#模拟一个小的数据集(250个观测值,300个标记)]
set.seed(3421475)
N <- 250
M <- 300
Z <- matrix(sample(c(1,-1),N * M, replace = TRUE),
nrow = N,
ncol = M)
## marker effects[#标记效应]
u <- rnorm(M, 0, sqrt(1/M))
sig2e <- 1
y <- Z %*% u + rnorm(N,0,sqrt(sig2e))
## simulate a random variance-covariance structure of the adjusted means[#模拟的随机方差 - 协方差结构的调整手段]
## (Note that this is just for demonstration purposes, the values are[#(请注意,这只是出于演示的目的,该值]
## non-sensical!)[#无意义的!)]
R <- matrix(rnorm(N*N),N,N)
diag(R) <- abs(diag(R))
R <- R + t(R)
## rotate[#旋转]
out_r <- rrBlupRotation(y, Z = Z, R = R)
## use rotated y,X and Z for computing marker effects and set sig2e = 1[#使用旋转Y,X和Z用于计算标记效应和设置sig2e = 1]
out_RRBLUP_m6_r <- rrBlupM6(y = out_r$y_tilda,
X = out_r$X_tilda,
Z = out_r$Z_tilda,
sig2e = 1,
chunks = 4)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|