找回密码
 注册
查看: 618|回复: 0

R语言 rrBlupMethod6包 rrBlupMethod6-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-28 20:34:34 | 显示全部楼层 |阅读模式
rrBlupMethod6-package(rrBlupMethod6)
rrBlupMethod6-package()所属R语言包:rrBlupMethod6

                                        rrBlupMethod6 – Re-parametrization of RR-BLUP to allow for a fixed residual variance.
                                         rrBlupMethod6  - 再RR-BLUP一个固定的允许误差方差的参数化。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

rrBlupMethod6 – Re-parametrization of the mixed model formulation of Kang et al. (2008), to allow for a fixed residual variance when using RR-BLUP for genomwide estimation of marker effects and linear transformation of the adjusted means proposed by Piepho et
rrBlupMethod6  - 再混合模型的参数化配方康等。 (2008),以允许当使用一个固定的残差的方差RR-BLUP为genomwide Piepho等提出的调整装置的标记效果和线性变换的估计的


Details

详细信息----------Details----------

Kang et al. (2008) describe an efficient mixed model formulation for the special case of only one random effect besides the error, which avoids any matrix computation in the REML estimation of variance components. Piepho et al.  (2011) re-parametrize their formulation to allow for a fixed residual variance. This re-parametrization might be especially useful in a plant breeding context. Here, the phenotypes used for estimation of marker effects are commonly the adjusted (for all other random and fixed effects) entry means, obtained beforehand from a one- or two-step adjustment procedure, most likely a mixed-model analysis (Moehring and Piepho, 2009). From this analysis, good estimates of the residual variance are usually available, so that it is not necessary and even counterproductive to re-estimate this parameter in RR-BLUP (Moehring and Piepho, 2009). Please see Piepho et al. (2011) for details.
Kang等人。 (2008)描述了一个高效率的混合模式制定的特殊情况下只有一个随机效应除了REML方差分量估计错误,这避免了矩阵计算。 piepho等。 (2011年)重新参数化配方,让一个固定的剩余方差。这种重新参数化,可能会对植物育种的上下文中特别有用。在这里,用于估计标记效应的表型是通常调整后(对于所有其他的随机和固定效应)入口装置,预先获得从一个或两个步骤的调整过程中,最有可能是混合模式分析(Moehring和Piepho ,2009)。从这个分析中,良好的估计剩余误差方差通常可用的,所以它是没有必要的,甚至适得其反重新估算在RR-BLUP(Moehring和Piepho,2009)此参数。请看到Piepho等。 (2011)的详细信息。

The method is restricted to the case where R = I sigma2, where R is the error variance-covariance matrix and sigma2 is the error variance. An independent estimate of R is often available from the analysis that yielded adjusted means. In case R does not meet this assumption, a linear transformation (rotation) can always be applied to ensure R = I sigma2 (Piepho et al., 2011, Schulz-Streeck et al., 2012), provided that R is known. Hence, we replace y by L_R y and Z by L_R Z, where y is the vector with the adjusted means, inv(R) = square(L_R) such that L_R is square and symmetric and Z is the matrix with marker information. L_R is easily obtained from a spectral decomposition of inv(R). With these replacements, analysis can proceed assuming that R = I sigma2 with sigma2 = 1.
的方法被限制的情况下,其中R = I sigma2,其中R是错误的方差 - 协方差矩阵和sigma2是误差方差。 R是一个独立的估计通常可以从调整手段的分析,取得了。的情况下R不符合这个假设,一个线性变换(旋转)总是可以被应用,以确保R = I sigma2(Piepho等。2011年,舒尔茨司缀克提等人,2012),前提是R是众所周知的。因此,我们将y L_R y和ZL_R Z,其中y是向量的调整手段,inv(R) = square(L_R)这样的 L_R是方形和对称和Z是矩阵标记信息的。 L_R很容易获得从一个谱分解inv(R)。这些替代品,可以继续分析假设R = I sigma2与sigma2 = 1。

The package rrBlupMethod6 implements the method denoted "Method 6" in Piepho et al. (2011). The original parametrization of Kang et al. (2008) was previously implemented in the R package rrBLUP (Endelman, 2011), available from CRAN under http://cran.r-project.org/web/packages/rrBLUP/index.html. We used parts of the code of an earlier version (1.1) of rrBLUP as a
的包rrBlupMethod6实现的方法,表示方法“6”在Piepho等。 (2011年)。原来的参数化康等。 (2008年)以前实施的R包rrBLUP:(Endelman,2011),可从CRAN http://cran.r-project.org/web/packages/rrBLUP/index.html。我们使用的代码的早期版本(1.1)rrBLUP作为


(作者)----------Author(s)----------


Torben Schulz-Streeck (1), Boubacar Estaghvirou (1), Frank
Technow (2)

(1) University of Hohenheim, Institute of Crop Science, Stuttgart, Germany

(2) University of Hohenheim, Institute of Plant Breeding, Seed Science
and Population Genetics, Stuttgart, Germany

Maintainer: Frank Technow <a href="mailto: Frank.Technow@uni-hohenheim.de "> Frank.Technow@uni-hohenheim.de </a>




参考文献----------References----------

genomic selection in plant breeding (submitted to Crop Science)
organism association mapping. Genetics 178:1709-1723
two-stage analyses of series of experiments. Crop Science 49, 1977-1988
for analysis of multi-environment trials. Biuletyn Oceny Odmian 33:7-20


参见----------See Also----------

rrBlupM6, rrBlupRotation
rrBlupM6,rrBlupRotation

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 18:45 , Processed in 0.053870 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表