找回密码
 注册
查看: 1373|回复: 0

R语言 aCGH包 find.hmm.states()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 10:59:21 | 显示全部楼层 |阅读模式
find.hmm.states(aCGH)
find.hmm.states()所属R语言包:aCGH

                                        Determines states of the clones
                                         确定国家的克隆

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function runs unsupervised HMM algorithm and produces the essentual state information which is used for the subsequent structure determination.
此功能运行不受监督的HMM算法,和产生的essentual的状态信息,这是为后续的结构测定。


用法----------Usage----------


hmm.run.func(dat, datainfo = clones.info, vr = 0.01, maxiter = 100,
             aic = TRUE, bic = TRUE, delta = NA, eps = 0.01)
find.hmm.states(aCGH.obj, ...)



参数----------Arguments----------

参数:aCGH.obj
object of class aCGH.  
对象类aCGH。


参数:dat
dataframe with clones in the rows and samples in the columns
列行和样品的克隆dataframe


参数:datainfo
dataframe containing the clones information that is used to map each clone of the array to a position on the genome. Has to contain columns with names Clone/Chrom/kb containing clone names, chromosomal assignment and kb positions respectively
dataframe含有克隆的信息用于映射数组的每个克隆到的基因组上的位置。包含列名称中含有克隆名称,染色体分配和kb的位置分别克隆/ chrom同时/ KB


参数:vr
Initial experimental variance
初步实验方差


参数:maxiter
Maximum number of iterations
最大迭代次数


参数:aic
TRUE or FALSE variable indicating whether or nor AIC criterion should be used for model selection (see DETAILS)
TRUE或FALSE的变量,表示AIC准则是否也应为模式选择(见详情)


参数:bic
TRUE or FALSE variable indicating whether or nor BIC criterion should be used for model selection (see DETAILS)
TRUE或FALSE的变量的BIC准则,是否也应为模型选择(见详情)


参数:delta
numeric vector of penalty factors to use with BIC criterion. If BIC is true, delta=1 is always calculated (see DETAILS)
数字矢量刑罚的因素,使用与BIC准则。如果是真实的BIC,δ= 1时总是计算(见详情)


参数:eps
parameter controlling the convergence of the EM algorithm.
参数控制的EM算法的收敛。


参数:...
All the parameters that can be passed to find.hmm.states except dat and datainfo.  
所有的参数,可以传递给find.hmm.states DAT和datainfo除外。


Details

详情----------Details----------

One or more model selection criterion is used to determine number of states on each chromosomes. If several are specified, then a separate matrix is produced for each criterion used. Delta is a fudge factor in BIC criterion: δ BIC(γ) = \log RSS(γ) +   q_{γ}δ\log n/n. Note that delta = NA leads to conventional BIC. (Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses (with discussion). J Roy Stat Soc B 64:641-656, 731-775 )
一个或多个模型选择标准是用来确定在每个染色体的国家数目。如果有几个被指定,然后产生一个单独的矩阵为每个使用的标准。Delta是在BIC的标准蒙混因素:δ BIC(γ) = \log RSS(γ) +   q_{γ}δ\log n/n.注意Delta=不适用,导致传统的BIC。 (Broman千瓦,速度TP(2002)一个实验杂交鉴定数量性状位点(讨论)模型选择方法研究罗伊统计SOC乙64:641-656,731-775)

find.hmm.states(aCGH.obj, ...) uses aCGH object instead of log2 ratios matrix dat. Equivalent representation (assuming normally distributed residuals) is to write -loglik(gamma) = n/2*log(RSS)(gamma) and then bic= -loglik+log(n)*k*delta/2 and aic = -loglik+2*k/2
find.hmm.states(aCGH.obj,...)使用aCGH对象,而不是的log2比矩阵DAT。等价表示(假设正态分布的残差)是写loglik(γ)= N / 2 *log(RSS)(伽玛),然后BIC = loglik +log(N)* K *Delta/ 2和AIC = loglik的+2 * K / 2


值----------Value----------

Two lists of lists are returned. Each list contains information on the states with each of the specified model selection criteria. E.g., if AIC = T, BIC = T and delta = c(1.5), then each list will contain three lists corresponding to AIC, BIC(1) and BIC(1.5) as the 1st,2nd and 3rd lists repsectively. If AIC is used, it always comes first followed by BIC and then deltaBIC in the order of delta vector.
两个名单列表返回。每个列表包含每个指定的模型选择标准上的状态信息。例如,如果工商局= T,BIC = T和Delta= C(1.5),然后每个列表将包含三个相应的工商行政管理机关,BIC(1)和(1.5)作为第一,第二和第三的名单repsectively BIC名单。如果使用AIC的是,它总是首先随后由BIC然后deltaBIC在Delta向量的顺序。


参数:states.hmm
Each of the sublists contains 2+ 6*n columns where the first two columns contain chromosome and kb positions for each clone in the dataset supplied followed up by 6 columns for each sample where n = number of samples.  column 1 = state  column 2 = smoothed value for a clone  column 3 = probability of being in a state  column 4 = predicted value of a state  column 5 = dispersion  column 6 = observed value  
每个子列表包含2 + 6 * n列前两列包含在DataSet中每个克隆的染色体和KB职位提供随访6列,每个样品,其中n =样本数。列1 =状态列2 =平滑克隆3列值=在状态列的概率4 =预测值的状态列5 =分散列6 =观测值


参数:nstates.hmm
Each of the sublists contains a matrix with each row corresponding to a chromosome and each column to a sample. The entries indicate how many different states were identified for a given sample on a given chromosome
每个子列表包含每一行对应一个染色体,每一个样本的列的矩阵。条目表明,对于一个给定的样本确定某一染色体上许多不同的状态如何


警告----------WARNING----------

When algortihm fails to fit an HMM for a given number
,当algortihm未能适应一个给定的数字一个HMM


作者(S)----------Author(s)----------


Jane Fridlyand



参考文献----------References----------



参见----------See Also----------

aCGH
aCGH


举例----------Examples----------



datadir <- system.file("examples", package = "aCGH")
latest.mapping.file <-
      file.path(datadir, "human.clones.info.Jul03.txt")
ex.acgh <-
    aCGH.read.Sprocs(dir(path = datadir,pattern = "sproc",
                     full.names = TRUE), latest.mapping.file,
                     chrom.remove.threshold = 23)
ex.acgh

data(colorectal)
#in the interests of time, we comment the actual hmm-finding function out.[在时间上的利益,我们评论的实际HMM发现功能。]
#hmm(ex.acgh) &lt;- find.hmm.states(ex.acgh, aic = TRUE, delta = 1.5)[HMM(ex.acgh)< -  find.hmm.states(ex.acgh,AIC = TRUE,δ= 1.5)]
summary(ex.acgh)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-22 19:46 , Processed in 0.025867 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表