getFixClipRegTS(ROptRegTS)
getFixClipRegTS()所属R语言包:ROptRegTS
Generic Function for the Computation of the Optimal Clipping Bound
通用功能的最优裁剪绑定的计算
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generic function for the computation of the optimal clipping bound/function. This function is rarely called directly. It is used to compute optimally robust ICs in case of fixed robust models.
计算的最佳剪辑绑定/功能的通用功能。很少直接调用此函数。它是用来计算最佳鲁棒的集成电路的情况下,固定的可靠的模型。
用法----------Usage----------
getFixClipRegTS(clip, ErrorDistr, Regressor, risk, neighbor, ...)
参数----------Arguments----------
参数:clip
optimal clipping bound.
最佳剪裁的约束。
参数:ErrorDistr
error distribution.
误差分布。
参数:Regressor
regressor.
回归量。
参数:risk
object of class "RiskType".
对象类"RiskType"。
参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。
参数:...
additional parameters.
附加参数。
值----------Value----------
The optimal clipping bound/function is computed.
的最佳剪辑绑定/函数计算。
方法----------Methods----------
clip = "numeric", ErrorDistr = "Norm", Regressor = "UnivariateDistribution", risk = "fiUnOvShoot", neighbor = "ContNeighborhood" optimal clipping bound for finite-sample under-/overshoot risk.
剪辑=“数字”,ErrorDistr =“规范”,REGRESSOR =“UnivariateDistribution”的,风险=“fiUnOvShoot”,邻居=“ContNeighborhood”最佳剪裁约束有限样本的under-/overshoot风险。
clip = "numeric", ErrorDistr = "Norm", Regressor = "UnivariateDistribution", risk = "fiUnOvShoot", neighbor = "TotalVarNeighborhood" optimal clipping bound for finite-sample under-/overshoot risk.
剪辑=“数字”,ErrorDistr =“规范”,REGRESSOR =“UnivariateDistribution”的,风险=“fiUnOvShoot”,邻居=“TotalVarNeighborhood”最佳剪裁约束有限样本的under-/overshoot风险。
clip = "numeric", ErrorDistr = "Norm", Regressor = "numeric", risk = "fiUnOvShoot", neighbor = "CondContNeighborhood" optimal clipping function for finite-sample under-/overshoot risk.
片段=“数值”,ErrorDistr =“规范”,REGRESSOR =“数字”,风险=的“fiUnOvShoot”邻居“CondContNeighborhood”最佳剪辑功能有限样本的under-/overshoot风险。
clip = "numeric", ErrorDistr = "Norm", Regressor = "numeric", risk = "fiUnOvShoot", neighbor = "CondTotalVarNeighborhood" optimal clipping function for finite-sample under-/overshoot risk.
片段=“数值”,ErrorDistr =“规范”,REGRESSOR =“数字”,风险=的“fiUnOvShoot”邻居“CondTotalVarNeighborhood”最佳剪辑功能有限样本的under-/overshoot风险。
(作者)----------Author(s)----------
Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>
参考文献----------References----------
Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269–278.
Rieder, H. (1989) A finite-sample minimax regression estimator. Statistics 20(2): 211–221.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
参见----------See Also----------
ContIC-class, TotalVarIC-class, Av1CondContIC-class, Av2CondContIC-class, Av1CondTotalVarIC-class, CondContIC-class,
ContIC-class,TotalVarIC-class,Av1CondContIC-class,Av2CondContIC-class,Av1CondTotalVarIC-class,CondContIC-class,
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|