找回密码
 注册
查看: 341|回复: 0

R语言 ROptRegTS包 getAsRiskRegTS()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 23:22:39 | 显示全部楼层 |阅读模式
getAsRiskRegTS(ROptRegTS)
getAsRiskRegTS()所属R语言包:ROptRegTS

                                        Generic Function for Computation of Asymptotic Risks in case of Regression-Type Models
                                         通用函数计算的情况下,回归类模型的渐近风险

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Generic function for the computation of asymptotic risks in case of regression-type models. This function is rarely called directly.  It is used by other functions.
回归模型的渐近风险的情况下计算的通用功能。很少直接调用此函数。它被用来由其它函数。


用法----------Usage----------


getAsRiskRegTS(risk, ErrorL2deriv, Regressor, neighbor, ...)

## S4 method for signature 'asMSE,UnivariateDistribution,Distribution,Neighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
                Regressor, neighbor, clip, cent, stand, trafo)

## S4 method for signature 'asMSE,UnivariateDistribution,Distribution,Av2CondContNeighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
                Regressor, neighbor, clip, cent, stand, trafo)

## S4 method for signature 'asMSE,EuclRandVariable,Distribution,Neighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
                Regressor, neighbor, clip, cent, stand, trafo)

## S4 method for signature 'asBias,UnivariateDistribution,UnivariateDistribution,ContNeighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
                Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)

## S4 method for signature 'asBias,UnivariateDistribution,UnivariateDistribution,Av1CondContNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)

## S4 method for signature 'asBias,UnivariateDistribution,UnivariateDistribution,Av1CondTotalVarNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)

## S4 method for signature 'asBias,UnivariateDistribution,MultivariateDistribution,ContNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)

## S4 method for signature 'asBias,UnivariateDistribution,MultivariateDistribution,Av1CondContNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)

## S4 method for signature 'asBias,UnivariateDistribution,MultivariateDistribution,Av1CondTotalVarNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)

## S4 method for signature 'asBias,UnivariateDistribution,Distribution,Av2CondContNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)

## S4 method for signature 'asBias,RealRandVariable,Distribution,ContNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorDistr, trafo, z.start, A.start, maxiter, tol)

## S4 method for signature 'asBias,RealRandVariable,Distribution,Av1CondContNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, ErrorDistr, trafo, z.start, A.start, maxiter, tol)

## S4 method for signature 'asUnOvShoot,UnivariateDistribution,UnivariateDistribution,UncondNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, clip, cent, stand)

## S4 method for signature 'asUnOvShoot,UnivariateDistribution,UnivariateDistribution,CondNeighborhood'
getAsRiskRegTS(risk,
                ErrorL2deriv, Regressor, neighbor, clip, cent, stand)



参数----------Arguments----------

参数:risk
object of class "asRisk".
对象类"asRisk"。


参数:ErrorL2deriv
L2-derivative of ErrorDistr.
L2衍生ErrorDistr。


参数:Regressor
regressor.
回归量。


参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。


参数:...
additional parameters.
附加参数。


参数:clip
optimal clipping bound.
最佳剪裁的约束。


参数:cent
optimal centering constant/function.
最佳定心常数/功能。


参数:stand
standardizing matrix.
规范矩阵。


参数:trafo
matrix: transformation of the parameter.
矩阵变换的参数。


参数:ErrorDistr
error distribution.
误差分布。


参数:ErrorL2derivDistrSymm
symmetry of ErrorL2derivDistr.
对称的ErrorL2derivDistr。


参数:maxiter
the maximum number of iterations
最大迭代次数


参数:tol
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。


参数:z.start
initial value for the centering constant/function.
中心的常数/函数的初始值。


参数:A.start
initial value for the standardizing matrix.
标准化矩阵的初始值。


值----------Value----------

The asymptotic risk is computed.
的渐近计算风险。


方法----------Methods----------

  


risk = "asMSE", ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", neighbor = "Neighborhood" computes asymptotic mean square error in methods for function getInfRobRegTypeIC.
风险=“asMSE”的,ErrorL2deriv =“UnivariateDistribution”,回归量=“分配”,邻居=“邻居”计算函数getInfRobRegTypeIC渐近均方误差的方法。




risk = "asMSE", ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", neighbor = "Av2CondContNeighborhood"  computes asymptotic mean square error in methods for function getInfRobRegTypeIC.
风险=“asMSE”的,ErrorL2deriv =“UnivariateDistribution”,回归量=“分配”,邻居=“Av2CondContNeighborhood”计算函数getInfRobRegTypeIC渐近均方误差的方法。




risk = "asMSE", ErrorL2deriv = "EuclRandVariable", Regressor = "Distribution", neighbor = "Neighborhood" computes asymptotic mean square error in methods for function getInfRobRegTypeIC.
风险=“asMSE”,ErrorL2deriv =“EuclRandVariable”,REGRESSOR =“分配”邻居“邻居”计算功能getInfRobRegTypeIC渐近均方误差的方法。




risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "ContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“ContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "Av1CondContNeighborhood"  computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“Av1CondContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "Av1CondTotalVarNeighborhood"  computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“Av1CondTotalVarNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "ContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“ContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "Av1CondContNeighborhood"  computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“Av1CondContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "Av1CondTotalVarNeighborhood"  computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“Av1CondTotalVarNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", neighbor = "Av2CondContNeighborhood"  computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,邻居=“Av2CondContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", neighbor = "ContNeighborhood"  computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,邻居=“ContNeighborhood”计算标准的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asBias", ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", neighbor = "Av1CondContNeighborhood"  computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,邻居=“Av1CondContNeighborhood”计算标准的渐近偏差的方法函数getInfRobRegTypeIC。




risk = "asUnOvShoot", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "UncondNeighborhood" computes asymptotic under-/overshoot risk in methods for function getInfRobRegTypeIC.
风险=“asUnOvShoot”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR,邻居=“UnivariateDistribution”=“UncondNeighborhood”,计算渐近under-/overshoot风险为函数getInfRobRegTypeIC的方法。




risk = "asUnOvShoot", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "CondNeighborhood" computes asymptotic under-/overshoot risk in methods for function getInfRobRegTypeIC.   
风险=“asUnOvShoot”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR,邻居=“UnivariateDistribution”=“CondNeighborhood”,计算渐近under-/overshoot风险为函数getInfRobRegTypeIC的方法。


(作者)----------Author(s)----------


Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>



参考文献----------References----------

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106&ndash;115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics &amp; Decisions (submitted).
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness.  Bayreuth: Dissertation.

参见----------See Also----------

asRisk-class
asRisk-class

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 20:38 , Processed in 0.026351 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表