getInfLM(ROptEst)
getInfLM()所属R语言包:ROptEst
Functions to determine Lagrange multipliers
函数来确定拉格朗日乘子
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Functions to determine Lagrange multipliers A and a in a Hampel problem or in a(n) (inner) loop in a MSE problem; can be done either by optimization or by fixed point iteration. These functions are rarely called directly.
功能,以确定拉格朗日乘子A和a的一个的汉佩尔问题或在MSE的问题(n)的(内部)循环;可以通过优化或固定点迭代。这些函数很少直接调用。
用法----------Usage----------
getLagrangeMultByIter(b, L2deriv, risk, trafo,
neighbor, biastype, normtype, Distr,
a.start, z.start, A.start, w.start, std, z.comp,
A.comp, maxiter, tol, verbose = NULL,
warnit = TRUE)
getLagrangeMultByOptim(b, L2deriv, risk, FI, trafo,
neighbor, biastype, normtype, Distr,
a.start, z.start, A.start, w.start, std, z.comp,
A.comp, maxiter, tol, verbose = NULL, ...)
参数----------Arguments----------
参数:b
numeric; (>b_min; clipping bound for which the Lagrange multipliers are searched
数字;(>b_min;剪裁约束的拉格朗日乘子搜索
参数:L2deriv
L2-derivative of some L2-differentiable family of probability measures.
L2-衍生的一些L2-微家庭的概率措施。
参数:risk
object of class "RiskType".
对象类"RiskType"。
参数:FI
matrix: Fisher information.
矩阵:Fisher信息。
参数:trafo
matrix: transformation of the parameter.
矩阵变换的参数。
参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。
参数:biastype
object of class "BiasType" — the bias type with we work.
对象的类"BiasType"“ - 的偏置类型,我们的工作。
参数:normtype
object of class "NormType" — the norm type with we work.
对象的类"NormType" - 标准型与我们的工作。
参数:Distr
object of class "Distribution".
对象类"Distribution"。
参数:a.start
initial value for the centering constant (in p-space).
初始值的中心常数(p空间)。
参数:z.start
initial value for the centering constant (in k-space).
初始值的中心常数(k空间)。
参数:A.start
initial value for the standardizing matrix.
标准化矩阵的初始值。
参数:w.start
initial value for the weight function.
的权重函数的初始值。
参数:std
matrix of (or which may coerced to) class PosSemDefSymmMatrix for use of different (standardizing) norm.
矩阵(或强迫)类PosSemDefSymmMatrix使用不同的(标准化)标准。
参数:z.comp
logical vector: indication which components of the centering constant have to be computed.
逻辑向量指示要计算组件的中心不变。
参数:A.comp
matrix: indication which components of the standardizing matrix have to be computed.
矩阵:指示哪些组件标准化矩阵以计算。
参数:maxiter
the maximum number of iterations.
最大迭代次数。
参数:tol
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。
参数:verbose
logical: if TRUE, some messages are printed.
逻辑:如果TRUE,一些消息被打印出来。
参数:warnit
logical: if TRUE warning is issued if maximal number of iterations is reached.
逻辑:如果TRUE发出警告,如果达到最大迭代次数。
参数:...
additional parameters for optim.
额外参数optim。
值----------Value----------
a list with items <table summary="R valueblock"> <tr valign="top"><td>A</td> <td> Lagrange multiplier A (standardizing matrix)</td></tr> <tr valign="top"><td>a</td> <td> Lagrange multiplier a (centering in p-space)</td></tr> <tr valign="top"><td>z</td> <td> Lagrange multiplier z (centering in k-space)</td></tr> <tr valign="top"><td>w</td> <td> weight function involving Lagrange multipliers</td></tr> <tr valign="top"><td>biastype</td> <td> (possibly modified) bias type biastype from argument</td></tr> <tr valign="top"><td>normtype</td> <td> (possibly modified) norm type normtype from argument</td></tr> <tr valign="top"><td>normtype.old</td> <td> (possibly modified) norm type normtype before last (internal) update</td></tr> <tr valign="top"><td>risk</td> <td> (possibly [norm-]modified) risk risk from argument</td></tr> <tr valign="top"><td>std</td> <td> (possibly modified) argument std</td></tr> <tr valign="top"><td>iter</td> <td> number of iterations needed</td></tr> <tr valign="top"><td>prec</td> <td> precision achieved</td></tr> <tr valign="top"><td>b</td> <td> used clippng height b</td></tr> <tr valign="top"><td>call</td> <td> call with which either getLagrangeMultByIter or getLagrangeMultByOptim was called </td></tr> </table>
项目的列表<table summary="R valueblock"> <tr valign="top"> <TD> A</ TD> <TD>拉格朗日乘子A(标准化矩阵)</ TD > </ TR> <tr valign="top"> <TD> a </ TD> <TD>拉格朗日乘子a(中心p空间)</ TD> </ TR> <tr valign="top"> <TD> z</ TD> <TD>拉格朗日乘子z(中心k空间)</ TD> < / TR> <tr valign="top"> <TD> w </ TD> <TD>权重函数的拉格朗日乘子</ TD> </ TR> <tr valign="top"> <TD> biastype</ TD> <TD>(可能有改动)偏置类型biastype参数</ TD> </ TR> <tr valign="top"> <TD>normtype / TD> <TD>(可能有改动)标准型normtype参数</ TD> </ TR> <tr valign="top"> <TD> normtype.old</ TD> <TD> (可能有改动)标准型normtype前最后一个(内部)更新</ TD> </ TR> <tr valign="top"> <TD> risk</ TD> <TD>(可能[规范]改性)的风险risk参数</ TD> </ TR> <tr valign="top"> <TD>std </ TD> <TD>(可能有改动)参数std</ TD> </ TR> <tr valign="top"> <TD>iter </ TD> <TD>所需的迭代次数</ TD> </ TR> <TR VALIGN =“”> <TD>prec</ TD> <TD>精度达到</ TD> </ TR> <tr valign="top"> <TD>b</ TD > <TD>使用clippng高度b </ TD> </ TR> <tr valign="top"> <TD>call </ TD> <TD>检测是<X >或getLagrangeMultByIter被称为</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Peter Ruckdeschel <a href="mailtoeter.Ruckdeschel@itwm.fraunhofer.de">eter.Ruckdeschel@itwm.fraunhofer.de</a>
参考文献----------References----------
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106-115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics & Decisions 22: 201-223.
Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods in Statistics 14(1), 105-131.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
参见----------See Also----------
InfRobModel-class
InfRobModel-class
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|