找回密码
 注册
查看: 1388|回复: 0

R语言 nlcv包 nlcvData()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-22 21:11:18 | 显示全部楼层 |阅读模式
nlcvData(nlcv)
nlcvData()所属R语言包:nlcv

                                        Simulated Datasets to Demonstrate nlcv Functionality
                                         模拟实验演示nlcv功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Four different datasets were simulated using different types and strengths of signal. For each of these datasets a nested loop  cross validation procedure is run using each of random forest and t test feature selection.
四种不同的数据集进行了模拟使用不同类型和信号强度。对于每个数据集嵌套循环交叉验证正在运行的程序使用随机森林和t检验功能选择。


用法----------Usage----------


data(nlcvRF_R)



格式----------Format----------

The given data sets are delivered in the form of objects of class nlcv as produced by the nlcv function
类对象的形式交付给定的数据集nlcv生产nlcv功能


Details

详情----------Details----------

The objects were created using the code given in the examples  section.
使用的例子一节中给出的代码创建的对象。


举例----------Examples----------


## Not run: [#无法运行:]
### create datasets[#创建数据集]
set.seed(415)
EsetStrongSignal <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 10,
    nNoEffectCols = 0, betweenClassDifference = 2, withinClassSd = 0.5)
EsetWeakSignal <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 5,
    nNoEffectCols = 0, betweenClassDifference = 1, withinClassSd = 0.6)
EsetWeakHeteroSignal <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 5,
    nNoEffectCols = 5, betweenClassDifference = 1, withinClassSd = 0.6)
EsetRandom <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 0,
    nNoEffectCols = 0)

### run nested loop cross validation[#运行嵌套循环交叉验证]
nlcvRF_SS <- nlcv(EsetStrongSignal, classVar = "type", nRuns = 10,
    fsMethod = "randomForest", verbose = TRUE)
nlcvTT_SS <- nlcv(EsetStrongSignal, classVar = "type", nRuns = 10,
    fsMethod = "t.test", verbose = TRUE)
nlcvRF_WS <- nlcv(EsetWeakSignal, classVar = "type", nRuns = 10,
    fsMethod = "randomForest", verbose = TRUE)
nlcvTT_WS <- nlcv(EsetWeakSignal, classVar = "type", nRuns = 10,
    fsMethod = "t.test", verbose = TRUE)
nlcvRF_WHS <- nlcv(EsetWeakHeteroSignal, classVar = "type", nRuns = 10,
    fsMethod = "randomForest", verbose = TRUE)
nlcvTT_WHS <- nlcv(EsetWeakHeteroSignal, classVar = "type", nRuns = 10,
    fsMethod = "t.test", verbose = TRUE)
nlcvRF_R <- nlcv(EsetRandom, classVar = "type", nRuns = 10,
    fsMethod = "randomForest", verbose = TRUE)
nlcvTT_R <- nlcv(EsetRandom, classVar = "type", nRuns = 10,
    fsMethod = "t.test", verbose = TRUE)

## End(Not run)[#结束(不运行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-22 15:56 , Processed in 0.020860 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表