找回密码
 注册
查看: 399|回复: 0

R语言 ROptEstOld包 getAsRisk()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 23:06:34 | 显示全部楼层 |阅读模式
getAsRisk(ROptEstOld)
getAsRisk()所属R语言包:ROptEstOld

                                        Generic Function for Computation of Asymptotic Risks
                                         通用函数计算的渐近风险

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Generic function for the computation of asymptotic risks. This function is rarely called directly. It is used by  other functions.
通用函数计算的渐近风险。很少直接调用此函数。它被用来由其它函数。


用法----------Usage----------


getAsRisk(risk, L2deriv, neighbor, ...)

## S4 method for signature 'asMSE,UnivariateDistribution,Neighborhood'
getAsRisk(risk, L2deriv, neighbor, clip, cent, stand, trafo)

## S4 method for signature 'asMSE,EuclRandVariable,Neighborhood'
getAsRisk(risk, L2deriv, neighbor, clip, cent, stand, trafo)

## S4 method for signature 'asBias,UnivariateDistribution,ContNeighborhood'
getAsRisk(risk, L2deriv, neighbor, trafo)

## S4 method for signature 'asBias,UnivariateDistribution,TotalVarNeighborhood'
getAsRisk(risk, L2deriv, neighbor, trafo)

## S4 method for signature 'asBias,RealRandVariable,ContNeighborhood'
getAsRisk(risk, L2deriv, neighbor, Distr, L2derivDistrSymm, trafo,
             z.start, A.start, maxiter, tol)

## S4 method for signature 'asCov,UnivariateDistribution,ContNeighborhood'
getAsRisk(risk, L2deriv, neighbor, clip, cent, stand)

## S4 method for signature 'asCov,UnivariateDistribution,TotalVarNeighborhood'
getAsRisk(risk, L2deriv, neighbor, clip, cent, stand)

## S4 method for signature 'asCov,RealRandVariable,ContNeighborhood'
getAsRisk(risk, L2deriv, neighbor, Distr, clip, cent, stand)

## S4 method for signature 'trAsCov,UnivariateDistribution,UncondNeighborhood'
getAsRisk(risk, L2deriv, neighbor, clip, cent, stand)

## S4 method for signature 'trAsCov,RealRandVariable,ContNeighborhood'
getAsRisk(risk, L2deriv, neighbor, Distr, clip, cent, stand)

## S4 method for signature 'asUnOvShoot,UnivariateDistribution,UncondNeighborhood'
getAsRisk(risk, L2deriv, neighbor, clip, cent, stand, trafo)



参数----------Arguments----------

参数:risk
object of class "asRisk".
对象类"asRisk"。


参数:L2deriv
L2-derivative of some L2-differentiable family of probability distributions.
L2-衍生的概率分布的一些L2-微的家庭。


参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。


参数:...
additional parameters.
附加参数。


参数:clip
optimal clipping bound.
最佳剪裁的约束。


参数:cent
optimal centering constant.
最优的中心不变。


参数:stand
standardizing matrix.
规范矩阵。


参数:trafo
matrix: transformation of the parameter.
矩阵变换的参数。


参数:Distr
object of class "Distribution".
对象类"Distribution"。


参数:L2derivDistrSymm
object of class "DistrSymmList".
对象类"DistrSymmList"。


参数:z.start
initial value for the centering constant.
定心常数的初始值。


参数:A.start
initial value for the standardizing matrix.
标准化矩阵的初始值。


参数:maxiter
the maximum number of iterations
最大迭代次数


参数:tol
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。


值----------Value----------

The asymptotic risk is computed.
的渐近计算风险。


方法----------Methods----------

  


risk = "asMSE", L2deriv = "UnivariateDistribution", neighbor = "Neighborhood": computes asymptotic mean square error in methods for function getInfRobIC.
风险=的“asMSE”,L2deriv =“UnivariateDistribution”,邻居=“邻居”:计算渐近均方误差函数getInfRobIC方法。




risk = "asMSE", L2deriv = "EuclRandVariable", neighbor = "Neighborhood":  computes asymptotic mean square error in methods for function getInfRobIC.
风险=“asMSE”,L2deriv =“EuclRandVariable的”邻居“邻居”:计算函数getInfRobIC渐近均方误差的方法。




risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood":  computes standardized asymptotic bias in methods for function getInfRobIC.
风险=的“asBias”,L2deriv =“UnivariateDistribution”,邻居=“ContNeighborhood”:计算标准化的渐近偏差的方法函数getInfRobIC。




risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood":  computes standardized asymptotic bias in methods for function getInfRobIC.
风险=的“asBias”,L2deriv =“UnivariateDistribution”,邻居=“TotalVarNeighborhood”:计算标准化的渐近偏差的方法函数getInfRobIC。




risk = "asBias", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood":  computes standardized asymptotic bias in methods for function getInfRobIC.
风险=“asBias”,L2deriv =“RealRandVariable的”邻居“ContNeighborhood”:计算标准化的渐近偏差的方法函数getInfRobIC。




risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood":  computes asymptotic covariance in methods for function getInfRobIC.
的风险=“asCov”的,L2deriv =“UnivariateDistribution”,邻居=“ContNeighborhood”:计算渐近协方差的方法函数getInfRobIC。




risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood":  computes asymptotic covariance in methods for function getInfRobIC.
的风险=“asCov”的,L2deriv =“UnivariateDistribution”,邻居=“TotalVarNeighborhood”:计算渐近协方差的方法函数getInfRobIC。




risk = "asCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood":  computes asymptotic covariance in methods for function getInfRobIC.
风险=“asCov”,L2deriv =“RealRandVariable的”邻居“ContNeighborhood”:计算渐近协方差的方法函数getInfRobIC。




risk = "trAsCov", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood":  computes trace of asymptotic covariance in methods  for function getInfRobIC.
风险=的“trAsCov”,L2deriv的“UnivariateDistribution”,邻居=的“UncondNeighborhood”的渐近协方差函数getInfRobIC方法:计算跟踪。




risk = "trAsCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood":  computes trace of asymptotic covariance in methods for  function getInfRobIC.
的风险=“trAsCov”,L2deriv =“RealRandVariable的”,邻居=“ContNeighborhood:计算跟踪的渐近协方差的方法函数getInfRobIC。




risk = "asUnOvShoot", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood":  computes asymptotic under-/overshoot risk in methods for  function getInfRobIC.   
风险=的“asUnOvShoot”,L2deriv的“UnivariateDistribution”邻居“UncondNeighborhood”:函数getInfRobIC方法计算的渐近under-/overshoot风险的。


(作者)----------Author(s)----------


Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>



参考文献----------References----------

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics &amp; Decisions (submitted).
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness.  Bayreuth: Dissertation.

参见----------See Also----------

asRisk-class
asRisk-class

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 17:46 , Processed in 0.024204 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表