RODM_list_dbms_models(RODM)
RODM_list_dbms_models()所属R语言包:RODM
List Oracle Data Mining models
列出Oracle数据挖掘模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function list all of the Oracle Data Mining models in the
此功能列表中所有的Oracle数据挖掘模型的
用法----------Usage----------
RODM_list_dbms_models(database)
参数----------Arguments----------
参数:database
Database ODBC channel identifier returned from a call to RODM_open_dbms_connection
数据库的ODBC通道标识符返回调用RODM_open_dbms_connection
Details
详细信息----------Details----------
This function list all of the Oracle Data Mining models in the user's schema in the database. For each model, this function returns the model name, mining function (type of operation), algorithm, date the model was created, time it took to build the model (in seconds), size of the model (in megabytes), and comments associated with the model (if any).
此功能列表中所有的Oracle用户的模式在数据库中的数据挖掘模型。对于每一个模型,这个函数返回的型号名称,挖掘功能(操作类型),算法,模型创建的日期,花费的时间来构建模型(以秒为单位),该模型的大小(以兆字节为单位),和意见与模型(如有的话)相关联。
值----------Value----------
List of the following information: <table summary="R valueblock"> <tr valign="top"><td>MODEL_NAME</td> <td> Name of the model.</td></tr> <tr valign="top"><td>MINING_FUNCTION</td> <td> Mining function used when building the model.</td></tr> <tr valign="top"><td>ALGORITHM</td> <td> Algorithm used when building the model.</td></tr> <tr valign="top"><td>CREATION_DATE</td> <td> Date the model was created.</td></tr> <tr valign="top"><td>BUILD_DURATION</td> <td> Duration to build the model in seconds.</td></tr> <tr valign="top"><td>MODEL_SIZE</td> <td> Size of the model in MB.</td></tr> <tr valign="top"><td>COMMENTS</td> <td> Comments associated with the model, if any.</td></tr> </table>
名单的以下信息:<table summary="R valueblock"> <tr valign="top"> <TD> MODEL_NAME </ TD> <TD>模型的名称。</ TD> </ TR > <tr valign="top"> <TD> MINING_FUNCTION </ TD> <TD>挖掘功能构建模型时使用。</ TD> </ TR> <tr valign="top"> <TD >ALGORITHM </ TD> <TD>算法构建模型时使用。</ TD> </ TR> <tr valign="top"> <TD>CREATION_DATE </ TD> <TD >模型的创建日期。</ TD> </ TR> <tr valign="top"> <TD>BUILD_DURATION </ TD> <TD>建立的模型在几秒钟的时间。</ TD> </ TR> <tr valign="top"> <TD> MODEL_SIZE </ TD>模型在MB <TD>尺寸。</ TD> </ TR> <tr valign="top"> <TD> COMMENTS </ TD> <TD>评论与模型相关联,如果有的话。</ TD> </ TR> </表>
(作者)----------Author(s)----------
Pablo Tamayo <a href="mailto:pablo.tamayo@oracle.com">pablo.tamayo@oracle.com</a>
Ari Mozes <a href="mailto:ari.mozes@oracle.com">ari.mozes@oracle.com</a>
参考文献----------References----------
Oracle Data Mining Concepts 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28129/toc.htm
Oracle Data Mining Application Developer's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28131/toc.htm
Oracle Data Mining Administrator's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28130/toc.htm
Oracle Database PL/SQL Packages and Types Reference 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_datmin.htm#ARPLS192
实例----------Examples----------
## Not run: [#不运行:]
DB <- RODM_open_dbms_connection(dsn="orcl11g", uid= "rodm", pwd = "rodm")
data(titanic3, package="PASWR") # Load survival data from Titanic[加载生存“泰坦尼克”]
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes[选择的属性子集]
ds[,"survived"] <- ifelse(ds[,"survived"] == 1, "Yes", "No") # Rename target values[重命名目标值]
n.rows <- length(ds[,1]) # Number of rows[行数]
set.seed(seed=6218945)
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets[随机拆分数据集火车/测试子集]
titanic_train <- ds[random_sample,] # Training set[训练集]
titanic_test <- ds[setdiff(1:n.rows, random_sample),] # Test set[测试集]
RODM_create_dbms_table(DB, "titanic_train") # Push the training table to the database[推训练表到数据库]
RODM_create_dbms_table(DB, "titanic_test") # Push the testing table to the database[将测试表到数据库]
# Create an ODM Naive Bayes model[创建ODM Naive Bayes模型]
nb <- RODM_create_nb_model(
database = DB, # Database ODBC channel identifier[数据库的ODBC通道标识符]
model_name = "titanic_nb_model", # ODM model name[ODM型号名称]
data_table_name = "titanic_train", # (in quotes) Data frame or database table containing the input dataset[(在引号)数据框或数据库表中输入数据集]
target_column_name = "survived") # Target column name in data_table_name [目标列名data_table_name]
# Create an ODM Attribute Importance model[创建ODM属性的重要性模型]
ai <- RODM_create_ai_model(
database = DB, # Database ODBC channel identifier[数据库的ODBC通道标识符]
model_name = "titanic_ai_model", # ODM model name[ODM型号名称]
data_table_name = "titanic_train", # (in quotes) Data frame or database table containing the input dataset[(在引号)数据框或数据库表中输入数据集]
target_column_name = "survived") # Target column name in data_table_name [目标列名data_table_name]
# List the models[列出模型]
mlist <- RODM_list_dbms_models(DB)
mlist
RODM_drop_model(DB, "titanic_nb_model")
RODM_drop_model(DB, "titanic_ai_model")
RODM_drop_dbms_table(DB, "titanic_train")
RODM_drop_dbms_table(DB, "titanic_test")
RODM_close_dbms_connection(DB)
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|