找回密码
 注册
查看: 423|回复: 0

R语言 rockchalk包 rockchalk-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 22:44:48 | 显示全部楼层 |阅读模式
rockchalk-package(rockchalk)
rockchalk-package()所属R语言包:rockchalk

                                        Miscellaneous regression functions
                                         杂项回归功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The rockchalk package includes an ever-growing collection of functions that assist in the presentation of regression models.  The initial function was outreg, which produces LaTeX tables that summarize one or many fitted regression models.  It also offers plotting conveniences like plotPlane and plotSlopes, which illustrate some of the variables from a fitted regression model. For a detailed check on multicollinearity, see mcDiagnose. The user should be aware of this fact: Not all of these functions lead to models or types of analysis that we endorese.  Rather, they all lead to analysis that is endorsed by some scholars, and we feel it is important to facilitate the comparison of competing methods.  For example, the function standardize will calculate standardized regression coefficients for all predictors in a regression model's design matrix in order to replicate results from other statistical frameworks, no matter how unwise the use of such coefficients might be. The function meanCenter will allow the user to more selectively choose variables for centering (and possibly standardization) before they are entered into the design matrix.  Because of the importance of interaction variables in regression analysis, the residualCenter and meanCenter functions are offered.  While mean centering does not actually help with multicollinearity of interactive terms, many scholars have argued that it does.  The meanCenter function can be compared with the "residual centering" of interaction terms.
rockchalk包包括一个不断增长的回归模型演示文稿中的函数集合协助。最初的功能是outreg,产生LaTeX的表格,总结一个或多个拟合的回归模型。此外,还提供了绘图的便利,如plotPlane和plotSlopes,这说明一些从拟合回归模型的变量。多重共线性的详细检查,看mcDiagnose。用户应该意识到这样一个事实:并非所有这些功能的型号或类型的分析,我们endorese。相反,他们都可能导致赞同一些学者的分析,我们觉得这是非常重要的促进竞争的方法比较。例如,函数standardize计算标准化回归系数的回归模型的设计矩阵中的所有预测以复制其他统计框架的结果,不管如何使用这些系数可能是不明智的。功能meanCenter将允许用户能够更有选择性地选择定心(和可能的标准化)的变量之前,它们进入设计矩阵。由于交互变量回归分析中的重要性,residualCenter和meanCenter函数提供。而平均定心实际上并没有帮助的多重共线性的互动,许多学者认为它。 meanCenter功能可与“剩余为中心”的交互项。


(作者)----------Author(s)----------



Paul E. Johnson <a href="mailto:pauljohn@ku.edu">pauljohn@ku.edu</a>

Maintainer: Paul Johnson <a href="mailto:<pauljohn@ku.edu>">&lt;pauljohn@ku.edu&gt;</a>




参考文献----------References----------


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 14:27 , Processed in 0.020857 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表