scaleTau2(robustbase)
scaleTau2()所属R语言包:robustbase
Robust Tau-Estimate of Scale
强大的规模估计的头
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes the robust τ-estimate of univariate scale, as proposed by Maronna and Zamar (2002); improved by a consistency factor.
计算强劲的τ估计的单变量规模的建议,由Maronna和Zamar(2002);提高一致性因素。
用法----------Usage----------
scaleTau2(x, c1 = 4.5, c2 = 3.0, consistency = TRUE,
mu.too = FALSE, ...)
参数----------Arguments----------
参数:x
numeric vector
数字矢量
参数:c1,c2
non-negative numbers, specifying cutoff values for the biweighting of the mean and the rho function respectively.
非负数,指定的截止值分别的biweighting的均值和rho沸石功能。
参数:mu.too
logical indicating if both location and scale should be returned or just the scale (when mu.too=FALSE as by default).
逻辑的位置和规模,应退回或只是规模(当mu.too=FALSE,因为默认情况下)。
参数:consistency
logical indicating if the consistency correction factor (for the scale) should be applied.
逻辑指示是否应适用的一致性校正因子(规模)。
参数:...
potentially additional arguments which are not used.
潜在的额外的参数,这些参数不使用。
Details
详细信息----------Details----------
First, s0 := MAD, i.e. the equivalent of mad(x, constant=1) is computed. Robustness weights w_i := w_{c1}((x_i - med(X))/ s_0) are computed, where w_c(u) = max(0, (1 - (u/c)^2)^2). The robust location measure is defined as μ(X) := (∑_i w_i x_i)/(∑_i w_i), and the robust tau-estimate is s(X)^2 := s_0^2 * (1/n) ∑_i ρ_{c2}((x_i - μ(X))/s_0), where ρ_c(u) = min(c^2, u^2). <br> scaleTau2(*, consistency=FALSE) returns s(X), whereas this value is divided by its asymptotic limit when consistency = TRUE as by default.
首先,s0:= MAD,即相当于mad(x, constant=1)计算。鲁棒性的权重w_i := w_{c1}((x_i - med(X))/ s_0)计算,其中w_c(u) = max(0, (1 - (u/c)^2)^2)。坚固耐用的位置测量被定义为μ(X) := (∑_i w_i x_i)/(∑_i w_i),,,强劲的tau估计是s(X)^2 := s_0^2 * (1/n) ∑_i ρ_{c2}((x_i - μ(X))/s_0),其中ρ_c(u) = min(c^2, u^2)。参考scaleTau2(*, consistency=FALSE)返回s(X),而此值除以的渐近极限时consistency = TRUE因为默认情况下。
Note that for n = length(x) == 2, all equivariant scale estimates are proportional, and specifically, scaleTau2(x, consistency=FALSE) == mad(x, constant=1). See also the reference.
请注意,n = length(x) == 2,所有等变规模估计是成比例的,并且具体地,scaleTau2(x, consistency=FALSE) == mad(x, constant=1)。也参看参考。
值----------Value----------
numeric vector of length one (if mu.too is FALSE as by default) or two (when mu.too = TRUE) with robust scale or (location,scale) estimators s^(x) or (m^(x), s^(x)).
数字矢量的长度为一(mu.too如果是FALSE时,默认情况下)或两个(mu.too = TRUE)具有强大的规模(地点,规模)估计s^(x)或(m^(x), s^(x))。
(作者)----------Author(s)----------
Original by Kjell Konis with substantial modifications by
Martin Maechler.
参考文献----------References----------
Robust estimates of location and dispersion of high-dimensional datasets; Technometrics 44(4), 307–317.
参见----------See Also----------
Sn, Qn, mad; further covOGK for which scaleTau2 was designed.
Sn,Qn,mad进一步covOGKscaleTau2的设计。
实例----------Examples----------
x <- c(1:7, 1000)
sd(x) # non-robust std.deviation[非强大的std.deviation的]
scaleTau2(x)
scaleTau2(x, mu.too = TRUE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|