找回密码
 注册
查看: 449|回复: 0

R语言 robCompositions包 impCoda()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 20:00:41 | 显示全部楼层 |阅读模式
impCoda(robCompositions)
impCoda()所属R语言包:robCompositions

                                         Imputation of missing values in compositional data
                                         成分数据的缺失值的插补

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function offers different methods for the imputation of missing values in  compositional data. Missing values are initialized with proper values.  Then iterative algorithms try to find better estimations for the former missing values.
此功能提供不同的成分数据的缺失值的插补方法。遗漏值被初始化为正确的价值观。那么迭代算法试图找到更好的估计,前者遗漏值的。


用法----------Usage----------


impCoda(x, maxit = 10, eps = 0.5, method = "ltsReg", closed = FALSE, init = "KNN", k = 5, dl = rep(0.05, ncol(x)), noise=0.1, bruteforce=FALSE)



参数----------Arguments----------

参数:x
data frame or matrix  
数据框或矩阵


参数:maxit
maximum number of iterations  
最大迭代次数


参数:eps
convergence criteria  
收敛准则


参数:method
imputation method  
插补法


参数:closed
imputation of transformed data (using ilr transformation) or in the original space (closed equals TRUE)   
插补变换数据(使用ILR变换)或在原始空间(closed等于TRUE)


参数:init
method for initializing missing values  
缺少的值初始化方法


参数:k
number of nearest neighbors (if init $==$ “KNN”)  
最近的邻居(如果init $ == $“KNN)


参数:dl
detection limit(s), only important for the imputation of rounded zeros  
检出限(S),唯一重要的归集的圆润零


参数:noise
amount of adding random noise to predictors after convergency   
量添加随机噪声到预测后的收敛


参数:bruteforce
if TRUE, imputations over dl are set to dl. If FALSE, truncated (Tobit) regression is applied.  
如果为TRUE,贬损超过DL设置为DL。如果为FALSE,截断(托比)回归。


Details

详细信息----------Details----------

eps: The algorithm is finished as soon as the imputed values stabilize, i.e. until the sum of Aitchison distances from the present and previous iteration changes only marginally (eps).\
每股收益:尽快完成该算法的估算值稳定后,即从现在和以前的迭代变化的总和艾奇逊距离只有轻微(EPS)。\

method: Several different methods can be chosen, such as  "ltsReg": least trimmed squares regression is used within the iterative procedure. "lm": least squares regression is used within the iterative procedure.  "classical": principal component analysis is used within the  iterative procedure.  "ltsReg2": least trimmed squares regression is used within the iterative procedure.  The imputated values are perturbed in the direction of the predictor by values drawn  form a normal distribution with mean and standard deviation related to the corresponding  residuals and multiplied by noise.
方法:可以选择几种不同的方法,如ltsReg:至少修剪最小二乘回归内使用的迭代过程。 LM:在迭代过程中使用最小二乘回归。 “古典”:主成分分析法在迭代过程中使用。 “ltsReg2:至少修剪最小二乘回归用于在迭代过程中。 imputated值绘制形成有关的相应的残差,并乘以noise的平均值和标准偏差的正态分布的值的预测方向中的扰动。

method "roundedZero" is experimental. It imputes rounded zeros within our iterative framework.   
法“roundedZero”是实验性的。这归咎于我们的互动框架内圆的零。


值----------Value----------


参数:xOrig
Original data frame or matrix
原始数据框或矩阵


参数:xImp
Imputed data
估算数据


参数:criteria
Sum of the Aitchison distances from the present and previous iteration
现在和以前的迭代艾奇逊距离的总和


参数:iter
Number of iterations
迭代次数。


参数:maxit
Maximum number of iterations  
最大迭代次数


参数:w
Amount of imputed values
额的估算值


参数:wind
Index of the missing values in the data
在数据中的缺失值指数


(作者)----------Author(s)----------


Matthias Templ, Karel Hron



参考文献----------References----------

Computational Statistics and Data Analysis, vol 54 (12), pages 3095-3107.  

参见----------See Also----------

impKNNa, ilr
impKNNa,ilr


实例----------Examples----------


data(expenditures)
x <- expenditures
x[1,3]
x[1,3] <- NA
xi <- impCoda(x)$xImp
xi[1,3]
s1 <- sum(x[1,-3])
impS <- sum(xi[1,-3])
xi[,3] * s1/impS

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-24 20:47 , Processed in 0.026290 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表