找回密码
 注册
查看: 4445|回复: 0

R语言:cov.rob()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-17 10:26:58 | 显示全部楼层 |阅读模式
cov.rob(MASS)
cov.rob()所属R语言包:MASS

                                         Resistant Estimation of Multivariate Location and Scatter
                                         耐估计多元的位置与散布

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Compute a multivariate location and scale estimate with a high breakdown point – this can be thought of as estimating the mean and covariance of the good part of the data. cov.mve and cov.mcd are compatibility wrappers.
计算一个多元的高击穿点的位置和规模估计 - 这可以被认为是good部分数据的均值和方差估计。 cov.mve和cov.mcd兼容性包装。


用法----------Usage----------


cov.rob(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
        method = c("mve", "mcd", "classical"),
        nsamp = "best", seed)

cov.mve(...)
cov.mcd(...)



参数----------Arguments----------

参数:x
a matrix or data frame.  
矩阵或数据框。


参数:cor
should the returned result include a correlation matrix?  
返回的结果应包括相关矩阵?


参数:quantile.used
the minimum number of the data points regarded as good points.  
被视为good点的数据点的最低数量。


参数:method
the method to be used – minimum volume ellipsoid, minimum covariance determinant or classical product-moment. Using cov.mve or cov.mcd forces mve or mcd respectively.  
要使用的方法 - 最小体积椭球,最小方差行列式或古典的产品时刻。使用cov.mve或cov.mcd力量mve或mcd分别。


参数:nsamp
the number of samples or "best" or "exact" or "sample". If "sample" the number chosen is min(5*p, 3000), taken from Rousseeuw and Hubert (1997). If "best" exhaustive enumeration is done up to 5000 samples: if "exact" exhaustive enumeration will be attempted however many samples are needed.  
样本数或"best"或"exact"或"sample"。如果"sample"选择min(5*p, 3000),从Rousseeuw和Hubert(1997)。如果"best"做详尽的列举了5000个样本:如果"exact"然而,许多样品需要将试图穷尽枚举。


参数:seed
the seed to be used for random sampling: see RNGkind. The current value of .Random.seed will be preserved if it is set.  
采用随机抽样的种子:RNGkind。电流值的.Random.seed将被保留,如果它被设置。


参数:...
arguments to cov.rob other than method.
cov.rob比method其他的参数。


Details

详情----------Details----------

For method "mve", an approximate search is made of a subset of size quantile.used with an enclosing ellipsoid of smallest volume; in method "mcd" it is the volume of the Gaussian confidence ellipsoid, equivalently the determinant of the classical covariance matrix, that is minimized. The mean of the subset provides a first estimate of the location, and the rescaled covariance matrix a first estimate of scatter. The Mahalanobis distances of all the points from the location estimate for this covariance matrix are calculated, and those points within the 97.5% point under Gaussian assumptions are declared to be good. The final estimates are the mean and rescaled covariance of the good points.
对于方法"mve",近似搜索的大小quantile.used封闭椭球的体积最小的子集的方法"mcd"这是高斯信心椭球的体积,等效经典的协方差矩阵,最小的决定因素。子集的平均值提供了第一的位置估计,重新调整的协方差矩阵,初步估算了分散。从这个协方差矩阵的位置估计所有点的马氏距离计算,并宣布下高斯假设的97.5%,在这些点是good。最后估计是平均good点和重标方差。

The rescaling is by the appropriate percentile under Gaussian data; in addition the first covariance matrix has an ad hoc finite-sample correction given by Marazzi.
缩放功能是通过适当的百分根据高斯数据;第一的协方差矩阵中除了有特设Marazzi给出有限样本校正。

For method "mve" the search is made over ellipsoids determined by the covariance matrix of p of the data points. For method "mcd" an additional improvement step suggested by Rousseeuw and van Driessen (1999) is used, in which once a subset of size quantile.used is selected, an ellipsoid based on its covariance is tested (as this will have no larger a determinant, and may be smaller).
方法"mve"搜索由p数据点的协方差矩阵确定的椭球。 方法,因为这将"mcd"额外的改善步骤,由Rousseeuw和面包车Driessen的(1999)的建议,在这一次的大小quantile.used的一个子集被选中,根据其方差的椭球测试(有没有更大的一个决定因素,可能会更小)。


值----------Value----------

A list with components
与组件列表


参数:center
the final estimate of location.  
最终的位置估计。


参数:cov
the final estimate of scatter.  
分散的最终估计。


参数:cor
(only is cor = TRUE) the estimate of the correlation matrix.  
(仅是cor = TRUE)的相关矩阵的估计。


参数:sing
message giving number of singular samples out of total  
消息给奇异样本数总


参数:crit
the value of the criterion on log scale. For MCD this is the determinant, and for MVE it is proportional to the volume.  
日志规模标准值。为MCD的,这是决定因素,姆韦它的体积成正比。


参数:best
the subset used. For MVE the best sample, for MCD the best set of size quantile.used.  
使用子集。对于姆韦MCD的最好的样本,大小quantile.used最好的一套。


参数:n.obs
total number of observations.  </table>
观测的总数。 </ TABLE>


参考文献----------References----------

Robust Regression and Outlier Detection. Wiley.
Algorithms, Routines and S Functions for Robust Statistics. Wadsworth and Brooks/Cole.
multivariate outliers and leverage points,  Journal of the American Statistical Association, 85, 633&ndash;639.
minimum covariance determinant estimator. Technometrics 41, 212&ndash;223.
L1-Statistical Procedures and Related Topics  ed Y. Dodge, IMS Lecture Notes volume 31, pp. 201&ndash;214.

参见----------See Also----------

lqs
lqs


举例----------Examples----------


set.seed(123)
cov.rob(stackloss)
cov.rob(stack.x, method = "mcd", nsamp = "exact")

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-22 21:55 , Processed in 0.026315 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表