cac(rmac)
cac()所属R语言包:rmac
A General Method for Calculating the RMAC and FMAC for Continuous Data
,计算RMAC和FMAC连续数据的通用方法
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Calculates the FMAC or RMAC for continuous data sets. When the squared difference function is used with the FMAC, it is equivalent to Lin's concordance correlation coefficient.
计算的FMAC和RMAC的,连续的数据集。当平方差函数使用的FMAC,这是相当于林的一致性相关系数。
用法----------Usage----------
cac(x,type = c("absolute", "squared"), method = c("fmac", "rmac") , alternative = c("two.sided", "less", "greater"), conf.level= 0.95, na.rm = FALSE, numr = 999)
参数----------Arguments----------
参数:x
matrix or data frame of responses, where the responses are in columns 1 and 2
矩阵或数据框的响应,其中的反应是在列1和2中
参数:type
either "absolute" or "squared"; indicates the cost function
“绝对”或“平方”;表示的成本函数
参数:method
indicates which method of calculating the agreement coefficient to use
指示该方法计算的协议使用的系数
参数:alternative
either "two.sided", "less", "greater"; indicates the t-test if using the squared difference function
要么“two.sided”,“少”,“大于”,表示的t-测试,如果使用的差平方函数
参数:conf.level
confidence level for interval
置信水平区间
参数:na.rm
logical, remove missing values for both if missing response for either
逻辑删除缺失值的两个,如果缺少响应,无论是
参数:numr
integer indicating the number of bootstrapping samples to use (R)
整数表示的引导程序使用的样本数(R)
Details
详细信息----------Details----------
The function assumes that the input vectors are the first two columns of x. This function calculates the FMAC and RMAC for continuous data sets using one of two built in cost functions. If the squared difference cost function is used with the RMAC, this function uses an optimized method. Otherwise, this function uses the general methods, fmacBoot and rmacBoot.
假设输入向量的前两列x的功能。功能计算的FMAC和RMAC的,连续的数据集使用成本函数的两个内置。的RMAC如果差值平方的代价函数,该函数使用一个优化的方法。否则,该函数使用的一般方法,fmacBoot和rmacBoot。
The confidence intervals are calculated using the BCa method (as per fmacBoot and rmacBoot), unless the squared difference cost function is used, in which case the delta method is used (See the supplement for Fay (2005) for a description.).
的置信区间的计算采用BCA法(每fmacBoot和rmacBoot),除非差值平方的代价函数,在这种情况下,增量方法(见补充费伊(2005年的描述。))。
值----------Value----------
A list with class "htest" containing the following components is returned: <table summary="R valueblock"> <tr valign="top"><td>method</td> <td> a character string describing the statistical method used</td></tr> <tr valign="top"><td>statistic</td> <td> the value of the test statistic with a name describing it</td></tr> <tr valign="top"><td>conf.int</td> <td> a confidence internal for the agreement coefficient</td></tr> <tr valign="top"><td>estimate</td> <td> an estimate of the agreement coefficient</td></tr> <tr valign="top"><td>alternative</td> <td> a character string describing the altnative hypothesis</td></tr> <tr valign="top"><td>p.value</td> <td> the p-value for the test</td></tr> <tr valign="top"><td>data.name</td> <td> a character string giving the names of the data</td></tr>
列表与类“htest”返回包含以下组件:<table summary="R valueblock"> <tr valign="top"> <TD> method</ TD> <td>一个字符串描述所使用的统计方法</ TD> </ TR> <tr valign="top"> <TD>statistic </ TD> <TD>的检验统计量的值的名称描述</ TD> </ TR> <tr valign="top"> <TD> conf.int </ TD> <td>一个信心的内部协议系数</ TD> </ TR> <tr valign="top"> <TD>estimate </ TD> <TD>协议系数的估计值</ TD> </ TR> <tr valign="top"> <TD> alternative</ TD> < TD>描述altnative假设一个字符串</ TD> </ TR> <tr valign="top"> <TD>p.value </ TD> <TD>测试的p值</ TD > </ TR> <tr valign="top"> <TD>data.name </ TD> <td>一个字符串提供的数据</ TD> </ TR>
</table>
</ TABLE>
(作者)----------Author(s)----------
Jennifer Kirk (using functions written by M.P. Fay)
参考文献----------References----------
Fay, M.P. (2005). Random marginal agreement coefficients: Rethinking the adjustment for chance in agreement coefficients. Biostatistics, 6: 171-180.
参见----------See Also----------
rmac-package, rmacBoot, wkappa
rmac-package,rmacBoot,wkappa
实例----------Examples----------
# A simple example[一个简单的例子]
set.seed(12321)
x<-rnorm(10,1+(1:10))
y<-rnorm(10,(1:10))
plot(x,y,xlim=c(0,12),ylim=c(0,12))
lines(c(0,12),c(0,12))
example<- cbind(x,y)
cac(example, type = "absolute", method = "fmac")
cac(example, type = "absolute", method = "rmac")
#cor.test(x,y,alternative="two.sided")[cor.test(的x,y,替代= two.sided“)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|