survexp(survival)
survexp()所属R语言包:survival
Compute Expected Survival
计算预期生存
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns either the expected survival of a cohort of subjects, or the individual expected survival for each subject.
返回一个科目的队列,或个人预计每个科目的生存预期生存。
用法----------Usage----------
survexp(formula, data, weights, subset, na.action, rmap, times, cohort=TRUE,
conditional=FALSE, ratetable=survexp.us, scale=1, npoints,
se.fit, model=FALSE, x=FALSE, y=FALSE)
参数----------Arguments----------
参数:formula
formula object. The response variable is a vector of follow-up times and is optional. The predictors consist of optional grouping variables separated by the + operator (as in survfit), and is often ~1, i.e., expected survival for the entire group.
公式对象。响应变量是一个随访时间的向量,是可选的。预测包括分开+运营商(survfit),往往是~1,即,预计整个集团的生存作为可选的分组变量。
参数:data
data frame in which to interpret the variables named in the formula, subset and weights arguments.
数据框在解释formula名为变量,subset和weights参数。
参数:weights
case weights.
的情况下重量。
参数:subset
expression indicating a subset of the rows of data to be used in the fit.
表达指示data要适合使用的行的一个子集。
参数:na.action
function to filter missing data. This is applied to the model frame after subset has been applied. Default is options()$na.action. A possible value for na.action is na.omit, which deletes observations that contain one or more missing values.
函数来过滤丢失的数据。这是适用于后subset已应用于模型框架。默认options()$na.action。一个可能值na.action的na.omit,删除包含一个或多个缺失值的观测。
参数:rmap
an optional list that maps data set names to the ratetable names. See the details section below.
一个可选列表,地图数据设置的ratetable名称命名。见下面的细节部分。
参数:times
vector of follow-up times at which the resulting survival curve is evaluated. If absent, the result will be reported for each unique value of the vector of follow-up times supplied in formula.
向量的后续造成的生存曲线进行评估的时间。如果缺席,结果将报告为每个独特的价值在formula提供后续的向量。
参数:cohort
logical value: if FALSE, each subject is treated as a subgroup of size 1. The default is TRUE.
逻辑值:如果FALSE,每个主题作为一个分组大小为1处理。默认TRUE。
参数:conditional
logical value: if TRUE, the follow-up times supplied in formula are death times and conditional expected survival is computed. If FALSE, the follow-up times are potential censoring times. If follow-up times are missing in formula, this argument is ignored.
逻辑值:如果TRUE,formula死亡时间和计算条件的预期生存提供后续倍。如果FALSE,随访时间是潜在的审查倍。如果随访时间在formula失踪,则忽略此参数。
参数:ratetable
a table of event rates, such as survexp.uswhite, or a fitted Cox model.
一个事件的发生率,如survexp.uswhite,或拟合Cox模型表。
参数:scale
numeric value to scale the results. If ratetable is in units/day, scale = 365.25 causes the output to be reported in years.
数值扩展的结果。 ratetable如果/天,scale = 365.25导致输出报告将在几年的单位。
参数:npoints
number of points at which to calculate intermediate results, evenly spaced over the range of the follow-up times. The usual (exact) calculation is done at each unique follow-up time. For very large data sets specifying npoints can reduce the amount of memory and computation required. For a prediction from a Cox model npoints is ignored.
点的数量来计算的中间结果,平均随访时间范围内间隔。通常的(确切)进行计算,在每一个独特的随访时间。对于非常大的数据集指定npoints可以减少所需的内存和计算量。对于一个从Cox模型npoints预测被忽略。
参数:se.fit
compute the standard error of the predicted survival. The default is to compute standard errors whenever possible, which at this time is only for the Ederer method and a Cox model as the rate table.
计算标准错误的预测生存。默认为计算标准误差,只要有可能,此时只有埃德雷尔方法和费率表的Cox模型。
参数:model,x,y
flags to control what is returned. If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result, with the same names as the flag arguments. </table>
标志来控制返回。如果这些是真的,那么返回的框架模型,该模型矩阵,和/或响应时间的向量将作为最终结果的组成部分,作为标志参数相同的名称。 </ TABLE>
Details
详情----------Details----------
Individual expected survival is usually used in models or testing, to "correct" for the age and sex composition of a group of subjects. For instance, assume that birth date, entry date into the study, sex and actual survival time are all known for a group of subjects. The survexp.us population tables contain expected death rates based on calendar year, sex and age. Then
个人预期生存期通常用于模型或测试,一组受试者的年龄和性别组成的“纠正”。例如,假设投入到学习中,出生日期,入境日期,性别和所有已知的实际存活时间为一组科目。 survexp.us人口表包含预期的日历年度,性别和年龄上的死亡率。然后
值----------Value----------
if cohort=TRUE an object of class survexp, otherwise a vector of per-subject expected survival values. The former contains the number of subjects at risk and the expected survival for the cohort at each requested time.
如果cohort=TRUE类survexp,否则矢量每学科的生存价值的对象。前者包含的风险科目的数量和队列在每个请求的时间预计生存。
参考文献----------References----------
Biometrics, 39:173-84.
The relative survival rate: a statistical methodology. Natl Cancer Inst Monogr, 6:101-21.
Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics, 38:933-942.
Background mortality in clinical survival studies. Lancet, 341: 872-875.
参见----------See Also----------
survfit, pyears, survexp.us, survexp.fit.
survfit,pyears,survexp.us,survexp.fit。
举例----------Examples----------
# []
# Stanford heart transplant data[斯坦福大学心脏移植数据]
# We don't have sex in the data set, but know it to be nearly all males.[我们并没有在数据集的性别,但知道这是几乎所有男性。]
# Estimate of conditional survival [有条件的生存的估计]
survexp(futime ~ 1, rmap=list(sex="male", year=accept.dt,
age=(accept.dt-birth.dt)), conditional=TRUE, data=jasa)
# Estimate of expected survival stratified by prior surgery [预计生存分层估计前手术]
survexp(futime ~ surgery, rmap= list(sex="male", year=accept.dt,
age=(accept.dt-birth.dt)), conditional=TRUE, data=jasa)
## Compare the survival curves for the Mayo PBC data to Cox model fit[#Cox模型拟合比较为梅奥中国人民银行数据的生存曲线]
## [#]
pfit <-coxph(Surv(time,status>0) ~ trt + log(bili) + log(protime) + age +
platelet, data=pbc)
plot(survfit(Surv(time, status>0) ~ trt, data=pbc))
lines(survexp( ~ trt, ratetable=pfit, data=pbc), col='purple')
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|