wine(rebmix)
wine()所属R语言包:rebmix
Wine Recognition Data
葡萄酒识别数据
译者:生物统计家园网 机器人LoveR
描述----------Description----------
These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars (1-3). The analysis determined the quantities of 13 constituents: alcohol, malic acid, ash, alcalinity of ash, magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, colour intensity, hue, OD280/OD315 of diluted wines, and proline found in each of the three types of the wines. The number of instances in classes 1 to 3 is 59, 71 and 48, respectively.
这些数据是在意大利生长在相同的区域,但来自三个不同的品种(1-3)的葡萄酒的化学分析结果。分析,确定数量的13成分:酒精,苹果酸,灰分,的灰alcalinity,镁,总酚,黄酮类化合物,nonflavanoid酚,原花色素,颜色亮度,色调,OD280/OD315稀释的葡萄酒,和脯氨酸发现在每一个三种类型的葡萄酒。在1至3类的实例的数量是59,71和48。
用法----------Usage----------
wine
格式----------Format----------
wine is a data frame with 178 cases (rows) and 14 variables (columns) named:
wine是178例(行)和14个变量(列)命名的一个数据框:
Alcohol continuous.
Alcohol连续。
Malic.Acid continuous.
Malic.Acid连续。
Ash continuous.
Ash连续。
Alcalinity.of.Ash continuous.
Alcalinity.of.Ash连续。
Magnesium continuous.
Magnesium连续。
Total.Phenols continuous.
Total.Phenols连续。
Flavanoids continuous.
Flavanoids连续。
Nonflavanoid.Phenols continuous.
Nonflavanoid.Phenols连续。
Proanthocyanins continuous.
Proanthocyanins连续。
Color.Intensity continuous.
Color.Intensity连续。
Hue continuous.
Hue连续。
OD280.OD315.of.Diluted.Wines continuous.
OD280.OD315.of.Diluted.Wines连续。
Proline continuous.
Proline连续。
Cultivar continuous.
Cultivar连续。
源----------Source----------
Frank A, Asuncion A (2010). UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.
弗兰克·A,:亚松森A(2010)。 UCI机器学习数据库。 http://archive.ics.uci.edu/ml。
参考文献----------References----------
Recognition, 33, 833-839.
实例----------Examples----------
data("wine")
colnames(wine)
## Split wine dataset into three subsets for three Cultivars[#葡萄酒分为三个子集的数据集分割为三个品种]
## and remove Cultivar column from datasets.[#删除列数据集品种。]
winecolnames <- !(colnames(wine) %in% "Cultivar")
wine1 <- wine[wine$Cultivar == 1, winecolnames]
wine2 <- wine[wine$Cultivar == 2, winecolnames]
wine3 <- wine[wine$Cultivar == 3, winecolnames]
wine <- wine[ , winecolnames]
## Write datasets without Cultivar information into tab [#写的品种信息到“选项卡上的数据集不]
## delimited ASCII files.[#定界ASCII文件。]
write.table(wine, file = "wine.txt", sep = "\t",
eol = "\n", row.names = FALSE, col.names = FALSE)
write.table(wine1, file = "wine1.txt", sep = "\t",
eol = "\n", row.names = FALSE, col.names = FALSE)
write.table(wine2, file = "wine2.txt", sep = "\t",
eol = "\n", row.names = FALSE, col.names = FALSE)
write.table(wine3, file = "wine3.txt", sep = "\t",
eol = "\n", row.names = FALSE, col.names = FALSE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|