survreg(survival)
survreg()所属R语言包:survival
Regression for a Parametric Survival Model
参数生存模型的回归
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fit a parametric survival regression model. These are location-scale models for an arbitrary transform of the time variable; the most common cases use a log transformation, leading to accelerated failure time models.
适合参数生存回归模型。这是一个时间变量的任意变换位置规模的模式;最常见的情况下使用日志转换,导致加速失效时间模型。
用法----------Usage----------
survreg(formula, data, weights, subset,
na.action, dist="weibull", init=NULL, scale=0,
control,parms=NULL,model=FALSE, x=FALSE,
y=TRUE, robust=FALSE, score=FALSE, ...)
参数----------Arguments----------
参数:formula
a formula expression as for other regression models. The response is usually a survival object as returned by the Surv function. See the documentation for Surv, lm and formula for details.
作为其他回归模型公式表达。 Surv函数返回的响应通常是一个生存的对象。 Surv,lm和formula详情,请参阅文档。
参数:data
a data frame in which to interpret the variables named in the formula, weights or the subset arguments.
在解释formula,weights或subset参数命名的变量的数据框。
参数:weights
optional vector of case weights
可选的情况下权重向量
参数:subset
subset of the observations to be used in the fit
适合用于观测的子集
参数:na.action
a missing-data filter function, applied to the model.frame, after any subset argument has been used. Default is options()\$na.action.
丢失的数据过滤功能,适用于subset参数已使用的任何model.frame后,。默认options()\$na.action。
参数:dist
assumed distribution for y variable. If the argument is a character string, then it is assumed to name an element from survreg.distributions. These include "weibull", "exponential", "gaussian", "logistic","lognormal" and "loglogistic". Otherwise, it is assumed to be a user defined list conforming to the format described in survreg.distributions.
假设y变量的分布。如果参数是一个字符串,然后它被假定为从survreg.distributions元素命名。这些措施包括"weibull","exponential","gaussian","logistic","lognormal"和"loglogistic"。否则,它被认为是符合到survreg.distributions中描述的格式用户自定义列表。
参数:parms
a list of fixed parameters. For the t-distribution for instance this is the degrees of freedom; most of the distributions have no parameters.
一个固定的参数列表。例如对于t分布,这是自由度;分布最没有参数。
参数:init
optional vector of initial values for the parameters.
可选参数的初始值向量。
参数:scale
optional fixed value for the scale. If set to <=0 then the scale is estimated.
可选的固定值的规模。如果设置为<= 0,那么规模的估计。
参数:control
a list of control values, in the format produced by survreg.control. The default value is survreg.control()
一个控制值的列表,在survreg.control格式。默认值是survreg.control()
参数:model,x,y
flags to control what is returned. If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result, with the same names as the flag arguments.
标志来控制返回。如果这些是真的,那么返回的框架模型,该模型矩阵,和/或响应时间的向量将作为最终结果的组成部分,作为标志参数相同的名称。
参数:score
return the score vector. (This is expected to be zero upon successful convergence.)
返回比分向量。 (预计这将是成功后收敛为零。)
参数:robust
Use robust 'sandwich' standard errors, based on independence of individuals if there is no cluster() term in the formula, based on independence of clusters if there is.
使用强大的“三明治”的标准错误,基于个人独立的,如果有没有cluster()长期的公式,根据是否有独立的集群。
参数:...
other arguments which will be passed to survreg.control. </table>
其他参数将被传递到survreg.control。 </ TABLE>
值----------Value----------
an object of class survreg is returned.
survreg类的对象被返回。
参见----------See Also----------
survreg.object, survreg.distributions, pspline, frailty, ridge
survreg.object,survreg.distributions,pspline,frailty,ridge
举例----------Examples----------
# Fit an exponential model: the two fits are the same[适合指数模型:两个配合是相同的]
survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist='weibull',
scale=1)
survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian,
dist="exponential")
#[]
# A model with different baseline survival shapes for two groups, i.e.,[与基线为两个组,即不同的生存形状的模型,]
# two different scales[两个不同的尺度]
survreg(Surv(time, status) ~ ph.ecog + age + strata(sex), lung)
# There are multiple ways to parameterize a Weibull distribution. The survreg [有多种方法参数威布尔分布。在survreg]
# function imbeds it in a general location-scale familiy, which is a [功能嵌入在一个位置一般规模的家庭内,这是一个]
# different parameterization than the rweibull function, and often leads[不同参数化比rweibull功能,而且往往导致]
# to confusion.[混乱。]
# survreg's scale = 1/(rweibull shape)[survreg的规模= 1 /(rweibull形状)]
# survreg's intercept = log(rweibull scale)[survreg的拦截日志(rweibull规模)]
# For the log-likelihood all parameterizations lead to the same value.[所有参数化对数似然导致相同的值。]
y <- rweibull(1000, shape=2, scale=5)
survreg(Surv(y)~1, dist="weibull")
# Economists fit a model called `tobit regression', which is a standard[经济学家适合称为Tobit回归模型,这是一个标准]
# linear regression with Gaussian errors, and left censored data.[高斯的错误,左删失数据的线性回归。]
tobinfit <- survreg(Surv(durable, durable>0, type='left') ~ age + quant,
data=tobin, dist='gaussian')
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|