s(mgcv)
s()所属R语言包:mgcv
Defining smooths in GAM formulae
自由亚齐运动公式定义平滑
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Function used in definition of smooth terms within gam model formulae. The function does not evaluate a (spline) smooth - it exists purely to help set up a model using spline based smooths.
功能使用在光滑的定义在gam模型公式。该函数不评估(样条)顺利 - 它的存在纯粹是为了帮助建立了一个模型,采用样条根据平滑。
用法----------Usage----------
参数----------Arguments----------
参数:...
a list of variables that are the covariates that this smooth is a function of.
顺利,这是一个功能的协变量的变量列表。
参数:k
the dimension of the basis used to represent the smooth term. The default depends on the number of variables that the smooth is a function of. k should not be less than the dimension of the null space of the penalty for the term (see null.space.dimension), but will be reset if it is. See choose.k for further information.
维度的基础上使用的代表顺利的任期。默认值取决于变量的平稳是一个功能。 k应不小于长期的刑罚(见null.space.dimension),但将被重置,如果它是零空间的维数。看到choose.k为进一步的信息。
参数:fx
indicates whether the term is a fixed d.f. regression spline (TRUE) or a penalized regression spline (FALSE).
指示是否一词是一个固定的D.F.回归样条(TRUE)或处罚的回归样条(FALSE)。
参数:bs
a two letter character string indicating the (penalized) smoothing basis to use. (eg "tp" for thin plate regression spline, "cr" for cubic regression spline). see smooth.terms for an over view of what is available.
两个字母组成的字符串,使用说明(处罚)平滑基础。 (例如"tp",薄板回归样条"cr"三次回归样条)。看到smooth.terms以上观点是什么。
参数:m
The order of the penalty for this term (e.g. 2 for normal cubic spline penalty with 2nd derivatives when using default t.p.r.s basis). NA signals autoinitialization. Only some smooth classes use this. The "ps" class can use a 2 item array giving the basis and penalty order separately.
为了这个词的刑罚(如正常时使用默认TPRS基础的第二衍生物的三次样条罚款2)。 NA信号自动初始化。只有一些光滑的类使用。可以使用"ps"类2项的数组,分别给予基础和罚款秩序。
参数:by
a numeric or factor variable of the same dimension as each covariate. In the numeric vector case the elements multiply the smooth, evaluated at the corresponding covariate values (a "varying coefficient model" results). For the numeric by variable case the resulting smooth is not usually subject to a centering constraint (so the by variable should not be added as an additional main effect). In the factor by variable case a replicate of the smooth is produced for each factor level (these smooths will be centered, so the factor usually needs to be added as a main effect as well). See gam.models for further details. A by variable may also be a matrix if covariates are matrices: in this case implements linear functional of a smooth (see gam.models and linear.functional.terms for details).
一个相同尺寸为每个协变量的数值或因素。在数字向量的情况下元素乘以顺利的,在相应的协变量的值(一个变系数模型的结果)进行评估。对于数字by变量的情况下产生的顺利通常不会受到一个的定心约束(所以by variable不应该被添加作为一个额外的主要作用)。因素by变量的情况下顺利复制生产的每个因子水平(这些将集中的因素,因此通常需要作为一个主要作用,以及添加平滑)。看到gam.models作进一步的细节。如果协变量是矩阵的一个by变量也可能是一个矩阵:在这种情况下,实现线性平滑功能(见gam.models和linear.functional.terms详情)。
参数:xt
Any extra information required to set up a particular basis. Used e.g. to set large data set handling behaviour for "tp" basis.
任何额外的信息需要成立一个特定的基础。使用例如设置大型数据集处理"tp"的基础上的行为。
参数:id
A label or integer identifying this term in order to link its smoothing parameters to others of the same type. If two or more terms have the same id then they will have the same smoothing paramsters, and, by default, the same bases (first occurance defines basis type, but data from all terms used in basis construction). An id with a factor by variable causes the smooths at each factor level to have the same smoothing parameter.
整数识别标签或以其他相同类型的连接平滑参数这个词。如果有两个或两个以上的条款相同的id然后,他们将有相同平滑paramsters,并在默认情况下,同一基地(第一occurance定义的基础类型,但在基础建设中使用的所有条款中的数据)。一个因素id变量的原因by平滑有相同的平滑参数,每个因子水平。
参数:sp
any supplied smoothing parameters for this term. Must be an array of the same length as the number of penalties for this smooth. Positive or zero elements are taken as fixed smoothing parameters. Negative elements signal auto-initialization. Over-rides values supplied in sp argument to gam. Ignored by gamm.
任何提供本学期的平滑参数。必须在这平稳的处罚相同长度的数组。正数或零的元素都采取固定平滑参数。消极因素信号自动初始化。提供过游戏机值spgam参数。 gamm忽略。
Details
详情----------Details----------
The function does not evaluate the variable arguments. To use this function to specify use of your own smooths, note the relationships between the inputs and the output object and see the example in smooth.construct.
该功能不评估的可变参数。要使用此功能指定使用自己的平滑,注意输入和输出对象之间的关系,并在smooth.construct看到的例子。
值----------Value----------
A class xx.smooth.spec object, where xx is a basis identifying code given by the bs argument of s. These smooth.spec objects define smooths and are turned into bases and penalties by smooth.construct method functions.
A类xx.smooth.spec对象,其中xx是bss参数给定的代码的基础上确定。这些smooth.spec对象定义平滑,打开smooth.construct方法功能为基地和处罚。
The returned object contains the following items:
返回的对象包含下列项目:
参数:term
An array of text strings giving the names of the covariates that the term is a function of.
文本字符串数组协变量的名称,这个词是一个功能。
参数:bs.dim
The dimension of the basis used to represent the smooth.
维度的基础上使用的代表顺利。
参数:fixed
TRUE if the term is to be treated as a pure regression spline (with fixed degrees of freedom); FALSE if it is to be treated as a penalized regression spline
TRUE,如果长期是作为一个纯粹的回归样条(固定的自由程度)治疗;假的,如果它是被作为惩罚的回归样条处理
参数:dim
The dimension of the smoother - i.e. the number of covariates that it is a function of.
平滑的维度 - 即协变量的数量,它是一个功能。
参数:p.order
The order of the t.p.r.s. penalty, or 0 for auto-selection of the penalty order.
的为了t.p.r.s.,罚款,或罚款顺序自动选择为0。
参数:by
is the name of any by variable as text ("NA" for none).
是任何by("NA"无)作为文本的变量的名称。
参数:label
A suitable text label for this smooth term.
这光滑的长期的一个合适的文本标签。
参数:xt
The object passed in as argument xt.
对象传递参数xt。
参数:id
An identifying label or number for the smooth, linking it to other smooths. Defaults to NULL for no linkage.
一个识别标签的顺利,它连接到其他平滑。默认NULL没有联动。
参数:sp
array of smoothing parameters for the term (negative for auto-estimation). Defaults to NULL.
平滑长期(自动估计为负)的参数的数组。 NULL默认。
作者(S)----------Author(s)----------
Simon N. Wood <a href="mailto:simon.wood@r-project.org">simon.wood@r-project.org</a>
参考文献----------References----------
and Hall/CRC Press.
参见----------See Also----------
te, gam, gamm
te,gam,gamm
举例----------Examples----------
# example utilising `by' variables[例如,利用由“变量]
library(mgcv)
set.seed(0)
n<-200;sig2<-4
x1 <- runif(n, 0, 1);x2 <- runif(n, 0, 1);x3 <- runif(n, 0, 1)
fac<-c(rep(1,n/2),rep(2,n/2)) # create factor[创建因子]
fac.1<-rep(0,n)+(fac==1);fac.2<-1-fac.1 # and dummy variables[虚拟变量]
fac<-as.factor(fac)
f1 <- exp(2 * x1) - 3.75887
f2 <- 0.2 * x1^11 * (10 * (1 - x1))^6 + 10 * (10 * x1)^3 * (1 - x1)^10
f<-f1*fac.1+f2*fac.2+x2
e <- rnorm(n, 0, sqrt(abs(sig2)))
y <- f + e
# NOTE: smooths will be centered, so need to include fac in model....[注:平滑将集中,因此需要包括因素模型....]
b<-gam(y~fac+s(x1,by=fac)+x2)
plot(b,pages=1)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|