mqcc(qcc)
mqcc()所属R语言包:qcc
Multivariate Quality Control Charts
多元质量控制图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Create an object of class 'mqcc' to perform multivariate statistical quality control.
创建的对象类的mqcc“进行多元统计质量控制。
用法----------Usage----------
mqcc(data, type = c("T2", "T2.single"), center, cov,
limits = TRUE, pred.limits = FALSE,
data.name, labels, newdata, newlabels,
confidence.level = (1 - 0.0027)^p, rules = shewhart.rules,
plot = TRUE, ...)
## S3 method for class 'mqcc'
print(x, ...)
## S3 method for class 'mqcc'
summary(object, digits = getOption("digits"), ...)
## S3 method for class 'mqcc'
plot(x, add.stats = TRUE, chart.all = TRUE,
label.limits = c("LCL", "UCL"), label.pred.limits = c("LPL", "UPL"),
title, xlab, ylab, ylim, axes.las = 0,
digits = getOption("digits"), restore.par = TRUE, ...)
参数----------Arguments----------
参数:data
For subgrouped data a list with a data frame or a matrix for each variable to monitor. Each row of the data frame or matrix refers to a sample or ”rationale” group. For individual observations, where each sample has a single observation, users can provide a list with a data frame or a matrix having a single column, or a data frame or a matrix where each rows refer to samples and columns to variables. See examples.
对于抽血的数据列表中每个变量的数据框或矩阵进行监控。的数据框的每行或矩阵是指一个样品或“理由”组。对于个人的观察,其中每个样品具有单一的观察,用户可以提供一个与一个数据框或具有单个列的矩阵,或一个数据框或一个矩阵,其中每个行是指样品和列变量列表。见的例子。
参数:type
a character string specifying the type of chart:
一个字符串指定类型的图表:
<table summary="Rd table"> <tr> <td align="left"> </td><td align="left"> Chart description </td> </tr> <tr> <td align="left"> "T2" </td><td align="left"> Hotelling T^2 chart for subgrouped data </td> </tr> <tr> <td align="left"> "T2.single" </td><td align="left"> Hotelling T^2 chart for individual observations </td> </tr> <tr> <td align="left"> </td> </tr> </table>
<table summary="Rd table"> <TR> <td ALIGN="LEFT"> </ TD> <TD ALIGN="LEFT">图描述</ TD> </ TR> <TR> <TD对齐=“左“> "T2" </ TD> <TD ALIGN="LEFT">霍特林T^2抽血的数据图表</ TD> </ TR> <TR> <td ALIGN="LEFT"> "T2.single" </ TD> <TD ALIGN="LEFT">霍特林T^2图的个别意见</ TD> </ TR> <TR> <td ALIGN="LEFT"> </ TD> < / TR> </ TABLE>
参数:center
a vector of values to use for center of input variables.
为中心使用的输入变量的值的向量。
参数:cov
a matrix of values to use for the covariance matrix of input variables.
用于输入变量的协方差矩阵的值的矩阵。
参数:limits
a logical indicating if control limits (Phase I) must be computed (by default using limits.T2 or limits.T2.single) and plotted, or a two-values vector specifying control limits.
逻辑,表示如果必须计算控制界限(一期)(默认情况下,使用limits.T2或limits.T2.single)和策划,或二值向量确定控制界限。
参数:pred.limits
a logical indicating if prediction limits (Phase II) must be computed (by default using limits.T2 or limits.T2.single) and plotted, or a two-values vector specifying prediction limits.
逻辑如果的预测限制(二期)必须被计算(默认情况下,使用limits.T2或limits.T2.single)策划,或二值向量确定预测的限制。
参数:data.name
a string specifying the name of the variable which appears on the plots. If not provided is taken from the object given as data.
一个字符串,指定的变量,它的名称上出现的图。如果未提供被作为数据从给定的对象。
参数:labels
a character vector of labels for each group.
字符向量的每个组的标签。
参数:newdata
a data frame, matrix or vector, as for the data argument, providing further data to plot but not included in the computations.
提供进一步的数据的一个数据框,矩阵或向量,为的data参数,要绘制的,但不包括在计算中。
参数:newlabels
a character vector of labels for each new group defined in the argument newdata.
为每一个新的标签组中定义的参数newdata字符向量。
参数:confidence.level
a numeric value between 0 and 1 specifying the confidence level of the computed probability limits. By default is set at (1 - 0.0027)^p where p is the number of variables, and 0.0027 is the probability of Type I error for a single Shewhart chart at the usual 3-sigma control level.
介于0和1之间的一个数值,所计算的概率限制指定的置信水平。默认情况下是在(1 - 0.0027)^pp是多少变数,0.0027是I类错误的概率为一个单一的休哈特图在通常的3个sigma的控制水平。
参数:rules
a function of rules to apply to the chart. By default, the shewhart.rules function is used.
一功能的规则应用到图表中。默认情况下,shewhart.rules功能。
参数:plot
logical. If TRUE a quality chart is plotted.
逻辑。如果TRUE的质量图表绘制。
参数:add.stats
a logical value indicating whether statistics and other information should be printed at the bottom of the chart.
一个逻辑值,该值指示是否应印在底部的图表数据和其他资料。
参数:chart.all
a logical value indicating whether both statistics for data and for newdata (if given) should be plotted.
一个逻辑值,该值指示是否都统计data和newdata(如果有)应绘制。
参数:label.limits
a character vector specifying the labels for control limits (Phase I).
字符向量:指定控制限的标签(第一期)。
参数:label.pred.limits
a character vector specifying the labels for prediction control limits (Phase II).
指定一个字符向量预测控制界限(二期)的标签。
参数:title
a string giving the label for the main title.
一个字符串,给出的主标题的标签。
参数:xlab
a string giving the label for the x-axis.
一个字符串,给出的x轴的标签。
参数:ylab
a string giving the label for the y-axis.
一个字符串,给出的y轴的标签。
参数:ylim
a numeric vector specifying the limits for the y-axis.
一个数值向量为y-轴指定的限制。
参数:axes.las
numeric in {0,1,2,3} specifying the style of axis labels. See help(par).
数字在{0,1,2,3}指定轴标签的风格。见help(par)。
参数:digits
the number of significant digits to use when add.stats = TRUE.
的数量显著位数时使用的add.stats = TRUE。
参数:restore.par
a logical value indicating whether the previous par settings must be restored. If you need to add points, lines, etc. to a control chart set this to FALSE.
一个逻辑值,该值指示是否par设置必须恢复。如果你需要添加点,线,控制图设置为FALSE。
参数:object
an object of class 'mqcc'.
对象类的mqcc。
参数:x
an object of class 'mqcc'.
对象类的mqcc。
参数:...
additional arguments to be passed to the generic function.
额外的参数传递给泛型函数。
值----------Value----------
Returns an object of class 'mqcc'.
返回一个对象类的mqcc“。
(作者)----------Author(s)----------
Luca Scrucca <a href="mailto:luca@stat.unipg.it">luca@stat.unipg.it</a>
参考文献----------References----------
Mason, R.L. and Young, J.C. (2002) Multivariate Statistical Process Control with Industrial Applications, SIAM. <br> Montgomery, D.C. (2005) Introduction to Statistical Quality Control, 5th ed. New York: John Wiley & Sons. <br> Ryan, T. P. (2000), Statistical Methods for Quality Improvement, 2nd ed. New York: John Wiley & Sons, Inc.
参见----------See Also----------
stats.T2, stats.T2.single, limits.T2, limits.T2.single, ellipseChart, qcc
stats.T2,stats.T2.single,limits.T2,limits.T2.single,ellipseChart,qcc
实例----------Examples----------
##[#]
## Subgrouped data[#抽血的数据]
##[#]
# Ryan (2000, Table 9.2) data with p = 2 variables, m = 20 samples, n = 4 sample size:[瑞安(2000年,表9.2)P = 2变量的数据,M = 20个样本,n = 4的样本量:]
X1 = matrix(c(72, 56, 55, 44, 97, 83, 47, 88, 57, 26, 46,
49, 71, 71, 67, 55, 49, 72, 61, 35, 84, 87, 73, 80, 26, 89, 66,
50, 47, 39, 27, 62, 63, 58, 69, 63, 51, 80, 74, 38, 79, 33, 22,
54, 48, 91, 53, 84, 41, 52, 63, 78, 82, 69, 70, 72, 55, 61, 62,
41, 49, 42, 60, 74, 58, 62, 58, 69, 46, 48, 34, 87, 55, 70, 94,
49, 76, 59, 57, 46), ncol = 4)
X2 = matrix(c(23, 14, 13, 9, 36, 30, 12, 31, 14, 7, 10,
11, 22, 21, 18, 15, 13, 22, 19, 10, 30, 31, 22, 28, 10, 35, 18,
11, 10, 11, 8, 20, 16, 19, 19, 16, 14, 28, 20, 11, 28, 8, 6,
15, 14, 36, 14, 30, 8, 35, 19, 27, 31, 17, 18, 20, 16, 18, 16,
13, 10, 9, 16, 25, 15, 18, 16, 19, 10, 30, 9, 31, 15, 20, 35,
12, 26, 17, 14, 16), ncol = 4)
X = list(X1 = X1, X2 = X2)
q = mqcc(X, type = "T2")
summary(q)
ellipseChart(q)
ellipseChart(q, show.id = TRUE)
q = mqcc(X, type = "T2", pred.limits = TRUE)
# Ryan (2000) discussed Xbar-charts for single variables computed adjusting the [瑞安(2000)讨论了XBAR图调整计算单变量]
# confidence level of the T^2 chart:[置信水平的T ^ 2控制图:]
q1 = qcc(X1, type = "xbar", confidence.level = q$confidence.level^(1/2))
summary(q1)
q2 = qcc(X2, type = "xbar", confidence.level = q$confidence.level^(1/2))
summary(q2)
require(MASS)
# generate new "in control" data[产生新的“控制”]
Xnew = list(X1 = matrix(NA, 10, 4), X2 = matrix(NA, 10, 4))
for(i in 1:4)
{ x = mvrnorm(10, mu = q$center, Sigma = q$cov)
Xnew$X1[,i] = x[,1]
Xnew$X2[,i] = x[,2]
}
qq = mqcc(X, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)
# generate new "out of control" data[产生新的“控制”的数据]
Xnew = list(X1 = matrix(NA, 10, 4), X2 = matrix(NA, 10, 4))
for(i in 1:4)
{ x = mvrnorm(10, mu = 1.2*q$center, Sigma = q$cov)
Xnew$X1[,i] = x[,1]
Xnew$X2[,i] = x[,2]
}
qq = mqcc(X, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)
##[#]
## Individual observations data[#个别观测数据]
##[#]
data(boiler)
q = mqcc(boiler, type = "T2.single", confidence.level = 0.999)
summary(q)
# generate new "in control" data[产生新的“控制”]
boilerNew = mvrnorm(10, mu = q$center, Sigma = q$cov)
qq = mqcc(boiler, type = "T2.single", confidence.level = 0.999, newdata = boilerNew, pred.limits = TRUE)
summary(qq)
# generate new "out of control" data[产生新的“控制”的数据]
boilerNew = mvrnorm(10, mu = 1.01*q$center, Sigma = q$cov)
qq = mqcc(boiler, type = "T2.single", confidence.level = 0.999, newdata = boilerNew, pred.limits = TRUE)
summary(qq)
# provides "robust" estimates of means and covariance matrix[“稳健”的手段和协方差矩阵的估计]
library(MASS)
rob = cov.rob(boiler)
qrob = mqcc(boiler, type = "T2.single", center = rob$center, cov = rob$cov)
summary(qrob)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|