找回密码
 注册
查看: 1577|回复: 0

R语言:residuals.lme()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-16 21:13:11 | 显示全部楼层 |阅读模式
residuals.lme(nlme)
residuals.lme()所属R语言包:nlme

                                        Extract lme Residuals
                                         提取LME残差

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The residuals at level i are obtained by subtracting the fitted levels at that level from the response vector (and dividing by the estimated within-group standard error, if type="pearson"). The fitted values at level i are obtained by adding together the population fitted values (based only on the fixed effects estimates) and the estimated contributions of the random effects to the fitted values at grouping levels less or equal to i.  
级残差i得到响应向量减去装在该级别的水平(和除以组内估计标准误差,如果type="pearson")。级的拟合值i得到的人口加在一起在分组级别以下的拟合值拟合值(只对固定效应估计为基础)和随机效应的估计捐款或等于<X >


用法----------Usage----------


## S3 method for class 'lme'
residuals(object, level, type, asList, ...)



参数----------Arguments----------

参数:object
an object inheriting from class lme, representing a fitted linear mixed-effects model.
一个对象从lme类代表拟合的线性混合效应模型,继承。


参数:level
an optional integer vector giving the level(s) of grouping to be used in extracting the residuals from object. Level values increase from outermost to innermost grouping, with level zero corresponding to the population residuals. Defaults to the highest or innermost level of grouping.
可选的整数向量分组被用于从object提取残差的水平(S)。级别值增加从最外层到内层分组,水平为零,相应的人口残差。默认分组的最高或最内层水平。


参数:type
an optional character string specifying the type of residuals to be used. If "response", the &quot;raw&quot; residuals (observed - fitted) are used; else, if "pearson", the standardized residuals (raw residuals divided by the corresponding standard errors) are used; else, if "normalized", the normalized residuals (standardized residuals pre-multiplied by the inverse square-root factor of the estimated error correlation matrix) are used. Partial matching of arguments is used, so only the first character needs to be provided. Defaults to "pearson".  
一个可选的字符串指定要使用的残差类型。如果"response",“原始”的残差(观测 - 拟合);否则,如果"pearson",标准化残差的(原料残差除以相应的标准误差);否则,如果 "normalized",用于归残差(标准化残差估计误差相关矩阵的逆平方根因素预乘)。使用部分匹配的参数,所以才有了第一个字符需要提供。 "pearson"默认。


参数:asList
an optional logical value. If TRUE and a single value is given in level, the returned object is a list with the residuals split by groups; else the returned value is either a vector or a data frame, according to the length of level. Defaults to FALSE.
一个可选的逻辑值。如果TRUE和一个单一的值是在level,返回的对象是一个群体分裂的残差列表,否则返回值是一个向量或一个数据框,根据长度level。 FALSE默认。


参数:...
some methods for this generic require additional arguments.  None are used in this method.  
这个通用的一些方法需要额外的参数。没有使用这种方法。


值----------Value----------

if a single level of grouping is specified in level, the returned value is either a list with the residuals split by groups (asList = TRUE) or a vector with the residuals (asList = FALSE); else, when multiple grouping levels are specified in level, the returned object is a data frame with columns given by the residuals at different levels and the grouping factors.  For a vector or data frame result the naresid method is applied.
如果一个分组的单级level指定,返回值是一个团体分裂的残差列表(asList = TRUE)或残差矢量(asList = FALSE);其他当多个分组级别中指定level,返回的对象是在不同层面和分组因素的残差列的数据框。对于一个向量或数据框的结果naresid方法被应用。


作者(S)----------Author(s)----------


Jose Pinheiro and Douglas Bates <a href="mailto:bates@stat.wisc.edu">bates@stat.wisc.edu</a>



参见----------See Also----------

lme, fitted.lme
lme,fitted.lme


举例----------Examples----------


fm1 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
residuals(fm1, level = 0:1)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-23 22:41 , Processed in 0.025462 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表