bkde(KernSmooth)
bkde()所属R语言包:KernSmooth
Compute a Binned Kernel Density Estimate
计算一个分级的核密度估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns x and y coordinates of the binned kernel density estimate of the probability density of the data.
返回x和y坐标的分级内核密度估计的概率密度的数据。
用法----------Usage----------
bkde(x, kernel = "normal", canonical = FALSE, bandwidth,
gridsize = 401L, range.x, truncate = TRUE)
参数----------Arguments----------
参数:x
vector of observations from the distribution whose density is to be estimated. Missing values are not allowed.
从分布的密度估计的观测向量。遗漏值是不允许的。
参数:bandwidth
the kernel bandwidth smoothing parameter. Larger values of bandwidth make smoother estimates, smaller values of bandwidth make less smooth estimates. The default is a bandwidth computed from the variance of x, specifically the "oversmoothed bandwidth selector" of Wand and Jones (1995, page 61).
内核带宽平滑参数。 bandwidth值越大使平滑的估计,小bandwidth不太顺利的估计值。默认是从x,特别是“oversmoothed带宽选择”魔杖和琼斯(1995年,第61页)的方差计算带宽。
参数:kernel
character string which determines the smoothing kernel. kernel can be: "normal" - the Gaussian density function (the default). "box" - a rectangular box. "epanech" - the centred beta(2,2) density. "biweight" - the centred beta(3,3) density. "triweight" - the centred beta(4,4) density. This can be abbreviated to any unique abbreviation.
字符串,这就决定了平滑的内核。 kernel能"normal" - 高斯密度函数(默认)。 "box" - 一个矩形框。 "epanech" - 中心的β(2,2)的密度。 "biweight" - 中心的β(3,3)的密度。 "triweight" - 中心的β(4,4)的密度。这可以是任何独特的缩写简称。
参数:canonical
logical flag: if TRUE, canonically scaled kernels are used.
逻辑标志:如果TRUE,规范扩展的内核使用。
参数:gridsize
the number of equally spaced points at which to estimate the density.
等距点估计的密度。
参数:range.x
vector containing the minimum and maximum values of x at which to compute the estimate. The default is the minimum and maximum data values, extended by the support of the kernel.
向量x在计算估计的最小值和最大值。默认是最大和最小的数据值,由内核支持延长。
参数:truncate
logical flag: if TRUE, data with x values outside the range specified by range.x are ignored. </table>
逻辑标志:如果TRUE,x值range.x指定的范围之外的数据将被忽略。 </ TABLE>
Details
详情----------Details----------
This is the binned approximation to the ordinary kernel density estimate. Linear binning is used to obtain the bin counts. For each x value in the sample, the kernel is centered on that x and the heights of the kernel at each datapoint are summed. This sum, after a normalization, is the corresponding y value in the output.
这是普通的内核密度估计的分级逼近。线性分级用于获取的bin计数。对于每x样品中的价值,核心是围绕x“内核在每个数据点的高度概括。这笔款项,归一化后,相应的y产值。
值----------Value----------
a list containing the following components:
一个列表,包含以下组件:
参数:x
vector of sorted x values at which the estimate was computed.
向量排序x估计是计算值。
参数:y
vector of density estimates at the corresponding x. </table>
密度矢量估计,在相应的x。 </ TABLE>
背景----------Background----------
Density estimation is a smoothing operation. Inevitably there is a trade-off between bias in the estimate and the estimate's variability: large bandwidths will produce smooth estimates that may hide local features of the density; small bandwidths may introduce spurious bumps into the estimate.
密度估计是一个平滑的操作。必然是有偏见的估计和估计的变异之间的取舍:大带宽将产生平滑的估计,可能隐藏着地方特色的密度小的带宽估计可能引入的杂散颠簸。
参考文献----------References----------
Kernel Smoothing. Chapman and Hall, London.
参见----------See Also----------
density, dpik, hist, ksmooth.
density,dpik,hist,ksmooth。
举例----------Examples----------
data(geyser, package="MASS")
x <- geyser$duration
est <- bkde(x, bandwidth=0.25)
plot(est, type="l")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|