isoMDS(MASS)
isoMDS()所属R语言包:MASS
Kruskal's Non-metric Multidimensional Scaling
克鲁斯卡的非度量多维尺度
译者:生物统计家园网 机器人LoveR
描述----------Description----------
One form of non-metric multidimensional scaling
一种形式的非度量多维尺度
用法----------Usage----------
isoMDS(d, y = cmdscale(d, k), k = 2, maxit = 50, trace = TRUE,
tol = 1e-3, p = 2)
Shepard(d, x, p = 2)
参数----------Arguments----------
参数:d
distance structure of the form returned by dist, or a full, symmetric matrix. Data are assumed to be dissimilarities or relative distances, but must be positive except for self-distance. Both missing and infinite values are allowed.
距离dist,或一个完整的,对称矩阵结构形式返回。数据被认为是相异或相对距离,但必须是积极,除了自我距离。都丢失和无限的允许值。
参数:y
An initial configuration. If none is supplied, cmdscale is used to provide the classical solution, unless there are missing or infinite dissimilarities.
初始配置。如果没有提供,cmdscale被用来提供经典的解决方案,除非有丢失或无限异同。
参数:k
The desired dimension for the solution, passed to cmdscale.
解决方案所需的尺寸,通过cmdscale。
参数:maxit
The maximum number of iterations.
最大迭代次数。
参数:trace
Logical for tracing optimization. Default TRUE.
逻辑跟踪优化。默认TRUE。
参数:tol
convergence tolerance.
收敛公差。
参数:p
Power for Minkowski distance in the configuration space.
功率可夫斯基在配置空间的距离。
参数:x
A final configuration.
最后一个配置。
Details
详情----------Details----------
This chooses a k-dimensional (default k = 2) configuration to minimize the stress, the square root of the ratio of the sum of squared differences between the input distances and those of the configuration to the sum of configuration distances squared. However, the input distances are allowed a monotonic transformation.
这选择一个k-维(默认K = 2)配置,以最大限度地减少压力,平方根之间的输入距离和配置的配置距离的平方的总和的平方差的总和的比例。然而,允许输入距离单调的转变。
An iterative algorithm is used, which will usually converge in around 10 iterations. As this is necessarily an O(n^2) calculation, it is slow for large datasets. Further, since for the default p = 2 the configuration is only determined up to rotations and reflections (by convention the centroid is at the origin), the result can vary considerably from machine to machine.
迭代算法使用,这通常会集中在大约10次迭代。因为这必然是一个O(n^2)计算,它是为大型数据集的缓慢。此外,由于默认p = 2配置只确定了旋转和反射(按约定的重心是在原点),结果可以有很大的不同从机器到机器。
值----------Value----------
Two components:
两部分组成:
参数:points
A k-column vector of the fitted configuration.
K-列向量的拟合配置。
参数:stress
The final stress achieved (in percent). </table>
取得最终的应力(%)。 </ TABLE>
副作用----------Side Effects----------
If trace is true, the initial stress and the current stress are printed out every 5 iterations.
trace如果是真实的,初始应力和电流应力打印出每5次迭代。
参考文献----------References----------
Multidimensional Scaling. Chapman & Hall.
Pattern Recognition and Neural Networks. Cambridge University Press.
Modern Applied Statistics with S. Fourth edition. Springer.
参见----------See Also----------
cmdscale, sammon
cmdscale,sammon
举例----------Examples----------
swiss.x <- as.matrix(swiss[, -1])
swiss.dist <- dist(swiss.x)
swiss.mds <- isoMDS(swiss.dist)
plot(swiss.mds$points, type = "n")
text(swiss.mds$points, labels = as.character(1:nrow(swiss.x)))
swiss.sh <- Shepard(swiss.dist, swiss.mds$points)
plot(swiss.sh, pch = ".")
lines(swiss.sh$x, swiss.sh$yf, type = "S")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|