找回密码
 注册
查看: 1978|回复: 0

R语言:bacteria()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-16 20:09:02 | 显示全部楼层 |阅读模式
bacteria(MASS)
bacteria()所属R语言包:MASS

                                         Presence of Bacteria after Drug Treatments
                                         药物治疗后,细菌的存在

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Tests of the presence of the bacteria H. influenzae in children with otitis media in the Northern Territory of Australia.
在澳大利亚北领地中耳炎的儿童存在的细菌流感嗜血试验。


用法----------Usage----------


bacteria



格式----------Format----------

This data frame has 220 rows and the following columns:
此数据框有220行,以下的列:




y presence or absence: a factor with levels
Ÿ存在或不存在:与水平的一个因素




ap active/placebo: a factor with levels a and p.
AP主动/安慰剂:各级a和p的一个因素。




hilo hi/low compliance: a factor with levels hi amd
希洛高/低的规定:各级hiAMD的一个因素




week numeric: week of test.
一周数字:本周的测试。




ID subject ID: a factor.
编号题目编号:一个因素。




trt a factor with levels placebo, drug and
泰爱泰党的一个因素水平placebo,drug“


Details

详情----------Details----------

Dr A. Leach tested the effects of a drug on 50 children with a history of otitis media in the Northern Territory of Australia.  The children were randomized to the drug or the a placebo, and also to receive active encouragement to comply with taking the drug.
答:利奇博士对50例儿童中耳炎在澳大利亚北领地的历史测试药物的影响。这些儿童被随机分配到药物或安慰剂,也得到积极鼓励符合服用的药物。

The presence of H. influenzae was checked at weeks 0, 2, 4, 6 and 11: 30 of the checks were missing and are not included in this data frame.
流感嗜血杆菌的存在是0,2,4,6和11周时检查:检查的30人失踪,不包括在这个数据框。


源----------Source----------

Menzies School of Health Research 1999–2000 Annual Report pp. 18–21 (http://www.menzies.edu.au/publications/anreps/MSHR00.pdf).
孟席斯学校卫生研究1999-2000年度报告第18-21页(http://www.menzies.edu.au/publications/anreps/MSHR00.pdf)。


参考文献----------References----------

Modern Applied Statistics with S. Fourth edition.  Springer.

举例----------Examples----------


contrasts(bacteria$trt) <- structure(contr.sdif(3),
     dimnames = list(NULL, c("drug", "encourage")))
## fixed effects analyses[#固定的效果分析]
summary(glm(y ~ trt * week, binomial, data = bacteria))
summary(glm(y ~ trt + week, binomial, data = bacteria))
summary(glm(y ~ trt + I(week > 2), binomial, data = bacteria))

# conditional random-effects analysis[有条件的随机效应分析]
library(survival)
bacteria$Time <- rep(1, nrow(bacteria))
coxph(Surv(Time, unclass(y)) ~ week + strata(ID),
      data = bacteria, method = "exact")
coxph(Surv(Time, unclass(y)) ~ factor(week) + strata(ID),
      data = bacteria, method = "exact")
coxph(Surv(Time, unclass(y)) ~ I(week > 2) + strata(ID),
      data = bacteria, method = "exact")

# PQL glmm analysis[PQL GLMM分析]
library(nlme)
summary(glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
                family = binomial, data = bacteria))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-24 15:20 , Processed in 0.019978 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表