predict.qda(MASS)
predict.qda()所属R语言包:MASS
Classify from Quadratic Discriminant Analysis
从二次判别分析分类
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Classify multivariate observations in conjunction with qda
分类多元的意见,以qda一起
用法----------Usage----------
## S3 method for class 'qda'
predict(object, newdata, prior = object$prior,
method = c("plug-in", "predictive", "debiased", "looCV"), ...)
参数----------Arguments----------
参数:object
object of class "qda"
对象类"qda"
参数:newdata
data frame of cases to be classified or, if object has a formula, a data frame with columns of the same names as the variables used. A vector will be interpreted as a row vector. If newdata is missing, an attempt will be made to retrieve the data used to fit the qda object.
数据框进行分类的情况下,如果“object有一个公式,与使用的变量的名称相同的列的数据框。一个向量,将被解释为一个行向量。如果newdata缺少,企图将要检索用于适合qda对象的数据。
参数:prior
The prior probabilities of the classes, by default the proportions in the training set or what was set in the call to qda.
类的先验概率,在培训的比例由默认设置,或在呼叫qda设置。
参数:method
This determines how the parameter estimation is handled. With "plug-in" (the default) the usual unbiased parameter estimates are used and assumed to be correct. With "debiased" an unbiased estimator of the log posterior probabilities is used, and with "predictive" the parameter estimates are integrated out using a vague prior. With "looCV" the leave-one-out cross-validation fits to the original dataset are computed and returned.
这就决定如何处理的参数估计。用"plug-in"(默认),通常的无偏参数估计是用来和假设是正确的。 "debiased"无偏估计的后验概率日志,用"predictive"参数估计集成了一个模糊的前。与"looCV"适合留一出交叉验证的原始数据集的计算和返回。
参数:...
arguments based from or to other methods </table>
其他方法</ TABLE或基于参数>
Details
详情----------Details----------
This function is a method for the generic function predict() for class "qda". It can be invoked by calling predict(x) for an object x of the appropriate class, or directly by calling predict.qda(x) regardless of the class of the object.
这个函数是一个泛型函数predict()类"qda"方法。它可以通过调用调用predict(x)对象x适当的类,或直接致电predict.qda(x)不管对象的类。
Missing values in newdata are handled by returning NA if the quadratic discriminants cannot be evaluated. If newdata is omitted and the na.action of the fit omitted cases, these will be omitted on the prediction.
遗漏值在newdata返回处理NA如果二次判别无法评估。如果,newdata被忽略的na.action合适的省略情况下,这些预测将省略。
值----------Value----------
a list with components
一个组件的列表
参数:class
The MAP classification (a factor)
地图分类(因素)
参数:posterior
posterior probabilities for the classes </table>
后验概率的类</ TABLE>
参考文献----------References----------
Modern Applied Statistics with S. Fourth edition. Springer.
Pattern Recognition and Neural Networks. Cambridge University Press.
参见----------See Also----------
qda, lda, predict.lda
qda,lda,predict.lda
举例----------Examples----------
tr <- sample(1:50, 25)
train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
zq <- qda(train, cl)
predict(zq, test)$class
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|