summary.lm(stats)
summary.lm()所属R语言包:stats
Summarizing Linear Model Fits
总结线性模型适合
译者:生物统计家园网 机器人LoveR
描述----------Description----------
summary method for class "lm".
summary类"lm"方法。
用法----------Usage----------
## S3 method for class 'lm'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
## S3 method for class 'summary.lm'
print(x, digits = max(3, getOption("digits") - 3),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)
参数----------Arguments----------
参数:object
an object of class "lm", usually, a result of a call to lm.
一个类的对象"lm",通常,调用lm的结果。
参数:x
an object of class "summary.lm", usually, a result of a call to summary.lm.
一个类的对象"summary.lm",通常,调用summary.lm的结果。
参数:correlation
logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed.
逻辑; TRUE如果,估计参数的相关矩阵,则返回并打印。
参数:digits
the number of significant digits to use when printing.
打印时使用的有效位数的号码。
参数:symbolic.cor
logical. If TRUE, print the correlations in a symbolic form (see symnum) rather than as numbers.
逻辑。如果TRUE,在一个象征性的形式打印的相关性(见symnum),而不是数字。
参数:signif.stars
logical. If TRUE, "significance stars" are printed for each coefficient.
逻辑。如果TRUE,意义恒星的印有每个系数。
参数:...
further arguments passed to or from other methods.
通过进一步的论据或其他方法。
Details
详情----------Details----------
print.summary.lm tries to be smart about formatting the coefficients, standard errors, etc. and additionally gives "significance stars" if signif.stars is TRUE.
print.summary.lm尝试聪明格式化的系数,标准误差等,另外给“意义星”signif.stars如果是TRUE的。
Correlations are printed to two decimal places (or symbolically): to see the actual correlations print summary(object)$correlation directly.
相关印两个小数(或符号):看实际相关打印summary(object)$correlation直接。
值----------Value----------
The function summary.lm computes and returns a list of summary statistics of the fitted linear model given in object, using the components (list elements) "call" and "terms" from its argument, plus
函数summary.lm计算并返回一个列表object给定的模型拟合线性的汇总统计,从它的参数使用的组件(列表元素)"call"和"terms"加
参数:residuals
the weighted residuals, the usual residuals rescaled by the square root of the weights specified in the call to lm.
加权残值法,通常残差平方根的调用lm在指定的权重重新调整。
参数:coefficients
a p x 4 matrix with columns for the estimated coefficient, its standard error, t-statistic and corresponding (two-sided) p-value. Aliased coefficients are omitted.
p x 4矩阵的估计系数,标准误差,t-统计量和相应的(双面)p值的列。抗锯齿系数省略。
参数:aliased
named logical vector showing if the original coefficients are aliased.
命名逻辑的向量,如果原来的系数别名。
参数:sigma
the square root of the estimated variance of the random error <p align="center">σ^2 = 1/(n-p) Sum(w[i] R[i]^2), where R[i] is the i-th residual, residuals[i].
随机误差的估计方差的平方根<p ALIGN="CENTER">σ^2 = 1/(n-p) Sum(w[i] R[i]^2),其中R[i]日剩余i,residuals[i]。
参数:df
degrees of freedom, a 3-vector (p, n-p, p*), the last being the number of non-aliased coefficients.
自由度,3向量(p, n-p, p*),最后是一些非失真系数。
参数:fstatistic
(for models including non-intercept terms) a 3-vector with the value of the F-statistic with its numerator and denominator degrees of freedom.
(包括非截距模型)3向量F-统计值与它的分子和分母的自由程度。
参数:r.squared
R^2, the "fraction of variance explained by the model", <p align="center">R^2 = 1 - Sum(R[i]^2) / Sum((y[i]- y*)^2), where y* is the mean of y[i] if there is an intercept and zero otherwise.
R^2,“分数的方差模型解释”,<p ALIGN="CENTER">R^2 = 1 - Sum(R[i]^2) / Sum((y[i]- y*)^2),其中y*y[i]的平均值,如果有一个拦截,否则为零。
参数:adj.r.squared
the above R^2 statistic "adjusted", penalizing for higher p.
上述惩罚更高R^2 p统计调整,。
参数:cov.unscaled
a p x p matrix of (unscaled) covariances of the coef[j], j=1, …, p.
,p x p,coef[j]j=1, …, p矩阵(未缩放)方差。
参数:correlation
the correlation matrix corresponding to the above cov.unscaled, if correlation = TRUE is specified.
对应上面的相关矩阵cov.unscaled如果correlation = TRUE指定。
参数:symbolic.cor
(only if correlation is true.) The value of the argument symbolic.cor.
(只有correlation是真实的。)值参数symbolic.cor。
参数:na.action
from object, if present there.
从object,如果目前有。
参见----------See Also----------
The model fitting function lm, summary.
该模型的拟合函数lm,summary。
Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.
功能coef将提取的标准误,t-统计量和p值的系数矩阵。
举例----------Examples----------
##-- Continuing the lm(.) example:[ - 持续的LM例如:()。]
coef(lm.D90)# the bare coefficients[裸系数]
sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept[省略拦截]
sld90
coef(sld90)# much more[更]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|