nnet(nnet)
nnet()所属R语言包:nnet
Fit Neural Networks
适合神经网络
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fit single-hidden-layer neural network, possibly with skip-layer connections.
适合单隐层神经网络,可能与跳层连接。
用法----------Usage----------
nnet(x, ...)
## S3 method for class 'formula'[类formula的方法]
nnet(formula, data, weights, ...,
subset, na.action, contrasts = NULL)
## Default S3 method:[默认方法]
nnet(x, y, weights, size, Wts, mask,
linout = FALSE, entropy = FALSE, softmax = FALSE,
censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)
参数----------Arguments----------
参数:formula
A formula of the form class ~ x1 + x2 + ...
公式的形式class ~ x1 + x2 + ...
参数:x
matrix or data frame of x values for examples.
矩阵x值的例子或数据框。
参数:y
matrix or data frame of target values for examples.
矩阵或数据框的例子目标值。
参数:weights
(case) weights for each example – if missing defaults to 1.
(件)重量为每一个例子 - 如果缺少默认为1。
参数:size
number of units in the hidden layer. Can be zero if there are skip-layer units.
在隐藏层单位数目。如果有跳层单位,可以是零。
参数:data
Data frame from which variables specified in formula are preferentially to be taken.
数据框中指定的变量formula是优先要采取的。
参数:subset
An index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument must be named.)
索引向量指定要在训练样本的情况下。 (注:如果给定的,这个参数必须命名)
参数:na.action
A function to specify the action to be taken if NAs are found. The default action is for the procedure to fail. An alternative is na.omit, which leads to rejection of cases with missing values on any required variable. (NOTE: If given, this argument must be named.)
如果NA的发现将采取的一个函数来指定动作。默认操作是失败的过程。另一种方法是na.omit,从而导致拒绝与任何所需的变量的缺失值的情况下。 (注:如果给定的,这个参数必须命名)
参数:contrasts
a list of contrasts to be used for some or all of the factors appearing as variables in the model formula.
对比的名单将部分或全部的模型公式中的变量出现的因素。
参数:Wts
initial parameter vector. If missing chosen at random.
初始参数向量。如果缺少随意选择。
参数:mask
logical vector indicating which parameters should be optimized (default all).
逻辑向量表示要优化的参数(默认)。
参数:linout
switch for linear output units. Default logistic output units.
切换线性输出单位。默认后勤输出单位。
参数:entropy
switch for entropy (= maximum conditional likelihood) fitting. Default by least-squares.
切换为熵(=有条件的可能性最大)拟合。由最小二乘默认。
参数:softmax
switch for softmax (log-linear model) and maximum conditional likelihood fitting. linout, entropy, softmax and censored are mutually exclusive.
切换是softmax(对数线性模型)和最大有条件的可能性拟合。 linout,entropy,softmax和censored是相互排斥的。
参数:censored
A variant on softmax, in which non-zero targets mean possible classes. Thus for softmax a row of (0, 1, 1) means one example each of classes 2 and 3, but for censored it means one example whose class is only known to be 2 or 3.
softmax的一个变种,其中非零的目标意味着可能的类。因此,对于softmax行(0, 1, 1)意味着2和第3类各举一个例子,但,censored,“这意味着一个例子的类,只知道是2个或3个。
参数:skip
switch to add skip-layer connections from input to output.
切换到添加跳层连接,从输入到输出。
参数:rang
Initial random weights on [-rang, rang]. Value about 0.5 unless the inputs are large, in which case it should be chosen so that rang * max(|x|) is about 1.
初始随机权[ - rang,rang]。值约为0.5,除非投入大,在这种情况下应选择rang* MAX(|x|)大约是1。
参数:decay
parameter for weight decay. Default 0.
参数重量衰变。默认为0。
参数:maxit
maximum number of iterations. Default 100.
最大迭代次数。默认为100。
参数:Hess
If true, the Hessian of the measure of fit at the best set of weights found is returned as component Hessian.
如果情况属实,一套最好的发现权的适当措施黑森州返回作为组件Hessian。
参数:trace
switch for tracing optimization. Default TRUE.
切换跟踪优化。默认TRUE。
参数:MaxNWts
The maximum allowable number of weights. There is no intrinsic limit in the code, but increasing MaxNWts will probably allow fits that are very slow and time-consuming.
允许的最大数量的重量。有没有代码的内在限制,但增加MaxNWts可能会允许是非常缓慢而费时的配合。
参数:abstol
Stop if the fit criterion falls below abstol, indicating an essentially perfect fit.
停止合适的标准,如果属于以下abstol,说明基本上是完美的结合。
参数:reltol
Stop if the optimizer is unable to reduce the fit criterion by a factor of at least 1 - reltol.
停止优化,如果合适的标准,至少1 - reltol的一个因素是无法降低。
参数:...
arguments passed to or from other methods. </table>
参数传递或其他方法。 </ TABLE>
Details
详情----------Details----------
If the response in formula is a factor, an appropriate classification network is constructed; this has one output and entropy fit if the number of levels is two, and a number of outputs equal to the number of classes and a softmax output stage for more levels. If the response is not a factor, it is passed on unchanged to nnet.default.
如果在formula的响应是一个因素,构造一个适当的分类网络;这有一个输出和熵合适的级别数是两个,一个平等的班级数目的输出和一个softmax输出多层次的阶段。如果反应是不是一个因素,它是通过nnet.default不变。
Optimization is done via the BFGS method of optim.
优化完成通过optim的BFGS方法。
值----------Value----------
object of class "nnet" or "nnet.formula". Mostly internal structure, but has components
对象的类"nnet"或"nnet.formula"。主要是内部结构,但有分量
参数:wts
the best set of weights found
一套最好的发现权
参数:value
value of fitting criterion plus weight decay term.
装修标准,加上重量衰变长期的价值。
参数:fitted.values
the fitted values for the training data.
训练数据拟合值。
参数:residuals
the residuals for the training data.
训练数据的残差。
参数:convergence
1 if the maximum number of iterations was reached, otherwise 0. </table>
1如果达到最大迭代次数,否则0。 </ TABLE>
参考文献----------References----------
Pattern Recognition and Neural Networks. Cambridge.
Modern Applied Statistics with S. Fourth edition. Springer.
参见----------See Also----------
predict.nnet, nnetHess
predict.nnet,nnetHess
举例----------Examples----------
# use half the iris data[使用一半的虹膜数据]
ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])
targets <- class.ind( c(rep("s", 50), rep("c", 50), rep("v", 50)) )
samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
ir1 <- nnet(ir[samp,], targets[samp,], size = 2, rang = 0.1,
decay = 5e-4, maxit = 200)
test.cl <- function(true, pred) {
true <- max.col(true)
cres <- max.col(pred)
table(true, cres)
}
test.cl(targets[-samp,], predict(ir1, ir[-samp,]))
# or[或]
ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
species = factor(c(rep("s",50), rep("c", 50), rep("v", 50))))
ir.nn2 <- nnet(species ~ ., data = ird, subset = samp, size = 2, rang = 0.1,
decay = 5e-4, maxit = 200)
table(ird$species[-samp], predict(ir.nn2, ird[-samp,], type = "class"))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|